1
|
Xu C, Tang Y, Lu X, Chen R. Fyn, an important molecule in the brain, is a potential therapeutic target for brain tumours. Front Pharmacol 2024; 15:1485919. [PMID: 39697541 PMCID: PMC11652172 DOI: 10.3389/fphar.2024.1485919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Under normal physiological conditions, Fyn, a nonreceptor tyrosine kinase, is involved in signal transduction pathways in the nervous system and in the formation and activation of T lymphocytes. Fyn is a member of the Src family of kinases (SFKs) and plays a role in cell morphogenic transformation, motility, proliferation, and death, which in turn influences the development and progression of various cancer types. SFKs are overexpressed or hyperactive in tumours, and they are engaged in several signalling pathways that lead to tumour development. Inhibition of Fyn can enhance patient outcomes and prolong survival. Thus, Fyn is a desirable therapeutic target in a variety of tumour types. To lay the groundwork for further investigation and targeted therapy in tumours, in this article, we review the most recent findings on the function of Fyn in tumours, with an emphasis on its role in gliomas. Understanding the function of Fyn during tumourigenesis and development and in resistance to anticancer therapeutic agents can aid in the development and application of innovative medicines that specifically target this kinase, thus improving the management of cancers.
Collapse
Affiliation(s)
- Chongxi Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Tang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xing Lu
- Department of Gynecological Nursing, West China Second Hospital, Sichuan University, Chengdu, China
| | - Ruiqi Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Peng S, Fu Y. FYN: emerging biological roles and potential therapeutic targets in cancer. J Transl Med 2023; 21:84. [PMID: 36740671 PMCID: PMC9901160 DOI: 10.1186/s12967-023-03930-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Src family protein kinases (SFKs) play a key role in cell adhesion, invasion, proliferation, survival, apoptosis, and angiogenesis during tumor development. In humans, SFKs consists of eight family members with similar structure and function. There is a high level of overexpression or hyperactivity of SFKs in tumor, and they play an important role in multiple signaling pathways involved in tumorigenesis. FYN is a member of the SFKs that regulate normal cellular processes. Additionally, FYN is highly expressed in many cancers and promotes cancer growth and metastasis through diverse biological functions such as cell growth, apoptosis, and motility migration, as well as the development of drug resistance in many tumors. Moreover, FYN is involved in the regulation of multiple cancer-related signaling pathways, including interactions with ERK, COX-2, STAT5, MET and AKT. FYN is therefore an attractive therapeutic target for various tumor types, and suppressing FYN can improve the prognosis and prolong the life of patients. The purpose of this review is to provide an overview of FYN's structure, expression, upstream regulators, downstream substrate molecules, and biological functions in tumors.
Collapse
Affiliation(s)
- SanFei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
3
|
Lv W, Jin S, Cao D, Wang N, Jin X, Zhang Y. Effects of Luteinizing Hormone Releasing Hormone A2 on Gonad Development in Juvenile Amur Sturgeon, Acipenser schrenckii, Revealed by Transcriptome Profiling Analysis. Front Genet 2022; 13:859965. [PMID: 35401695 PMCID: PMC8989137 DOI: 10.3389/fgene.2022.859965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Acipenser schrenckii is an economically important aquatic species whose gonads require particularly long times to reach sexual maturity. Luteinizing hormone plays important roles in gonad development, and luteinizing hormone releasing hormone A2 (LH-A2) is used as an oxytocin to promote ovulation in aquaculture of A. schrenckii. In this study, we aimed to determine the effects of LH-A2 on gonad development in juvenile A. schrenckii through transcriptome profiling analysis of the pituitary and gonads after LH-A2 treatment at a dose of 3 μg/kg. The 17β-estradiol (E2) levels gradually increased with LH-A2 treatment time, and significantly differed from those of the control group on days 5 and 7 (p < 0.01). However, the content of testosterone (Testo) gradually decreased with LH-A2 treatment time and showed significant differences on day 3 (p < 0.05), and on days 5 and 7 (p < 0.01), compared to those in the control group. Thus, LH-A2 promotes the secretion of E2 and inhibits the secretion of Testo. Transcriptome profiling analysis revealed a total of 2,883 and 8,476 differentially expressed genes (DEGs) in the pituitary and gonads, respectively, thus indicating that LH-A2 has more regulatory effects on the gonads than the pituitary in A. schrenckii. Signal transduction, global and overview maps, immune system, endocrine system and lipid metabolism were the main enriched metabolic pathways in both the pituitary and gonads. Sixteen important genes were selected from these metabolic pathways. Seven genes were co-DEGs enriched in both signal transduction and endocrine system metabolic pathways. The other co-DEGs were selected from the immune system and lipid metabolism metabolic pathways, and showed mRNA expression changes of >7.0. The expression of five DEGs throughout LH-A2 treatment was verified to show the same patterns of change as those observed with RNA-seq, indicating the accuracy of the RNA-seq in this study. Our findings provide valuable evidence of the regulation of gonad development of juvenile A. schrenckii by LH-A2 and may enable the establishment of artificial techniques to regulate gonad development in this species.
Collapse
Affiliation(s)
- Weihua Lv
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shubo Jin
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Dingchen Cao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Nianmin Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xing Jin
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Ying Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
4
|
Dotan A, Kanduc D, Muller S, Makatsariya A, Shoenfeld Y. Molecular mimicry between SARS-CoV-2 and the female reproductive system. Am J Reprod Immunol 2021; 86:e13494. [PMID: 34407240 PMCID: PMC8420155 DOI: 10.1111/aji.13494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Oogenesis, the process of egg production by the ovary, involves a complex differentiation program leading to the production of functional oocytes. This process comprises a sequential pathway of steps that are finely regulated. The question related to SARS‐CoV‐2 infection and fertility has been evoked for several reasons, including the mechanism of molecular mimicry, which may contribute to female infertility by leading to the generation of deleterious autoantibodies, possibly contributing to the onset of an autoimmune disease in infected patients. Objective The immunological potential of the peptides shared between SARS‐CoV‐2 spike glycoprotein and oogenesis‐related proteins; Thus we planned a systematic study to improve our understanding of the possible effects of SARS‐CoV‐2 infection on female fertility using the angle of molecular mimicry as a starting point. Methods A library of 82 human proteins linked to oogenesis was assembled at random from UniProtKB database using oogenesis, uterine receptivity, decidualization, and placentation as a key words. For the analyses, an artificial polyprotein was built by joining the 82 a sequences of the oogenesis‐associated proteins. These were analyzed by searching the Immune Epitope DataBase for immunoreactive SARS‐CoV‐2 spike glycoprotein epitopes hosting the shared pentapeptides. Results SARS‐CoV‐2 spike glycoprotein was found to share 41 minimal immune determinants, that is, pentapeptides, with 27 human proteins that relate to oogenesis, uterine receptivity, decidualization, and placentation. All the shared pentapeptides that we identified, with the exception of four, are also present in SARS‐CoV‐2 spike glycoprotein–derived epitopes that have been experimentally validated as immunoreactive.
Collapse
Affiliation(s)
- Arad Dotan
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sylviane Muller
- CNRS-Strasbourg University Unit Biotechnology and Cell signaling/ Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France.,Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France.,Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France.,University of Strasbourg Institute for Advanced Study, Strasbourg, France
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,President of Ariel University, Ariel, Israel.,Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| |
Collapse
|
5
|
Sato K, Tokmakov AA. Toward the understanding of biology of oocyte life cycle in Xenopus Laevis: No oocytes left behind. Reprod Med Biol 2020; 19:114-119. [PMID: 32273815 PMCID: PMC7138939 DOI: 10.1002/rmb2.12314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND For the past more than 25 years, we have been focusing on the developmental and reproductive biology of the female gametes, oocytes, and eggs, of the African clawed frog Xenopus laevis. METHODS The events associated with the life cycle of these cells can be classified into the four main categories: first, oogenesis and cell growth in the ovary during the first meiotic arrest; second, maturation and ovulation that occur simultaneously and result in the acquisition of fertilization competence and the second meiotic arrest; third, fertilization, that is sperm-induced transition from egg to zygote; and fourth, egg death after spontaneous activation in the absence of fertilizing sperm. MAIN FINDINGS Our studies have demonstrated that signal transduction system involving tyrosine kinase Src and other oocyte/egg membrane-associated molecules such as uroplakin III and some other cytoplasmic proteins such as mitogen-activated protein kinase (MAPK) play important roles for successful ovulation, maturation, fertilization, and initiation of embryonic development. CONCLUSION We summarize recent advances in understanding cellular and molecular mechanisms underlying life cycle events of the oocytes and eggs. Our further intention is to discuss and predict potentially promising impact of the recent findings on the challenges facing reproductive biology and medicine, as well as societal contexts.
Collapse
Affiliation(s)
- Ken‐ichi Sato
- Laboratory of Cell Signaling and DevelopmentDepartment of Industrial Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| | - Alexander A. Tokmakov
- Laboratory of Cell Signaling and DevelopmentDepartment of Industrial Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| |
Collapse
|
6
|
Sato KI, Tokmakov AA. Membrane Microdomains as Platform to Study Membrane-Associated Events During Oogenesis, Meiotic Maturation, and Fertilization in Xenopus laevis. Methods Mol Biol 2019; 1920:59-73. [PMID: 30737686 DOI: 10.1007/978-1-4939-9009-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Studies on the egg plasma membrane-associated tyrosine kinase Src have shed light on the identity of the molecular machinery that is responsible for gamete interaction and possibly fusion in African clawed frog Xenopus laevis. Here we describe our protocol for identifying and analyzing molecular and cellular machinery that contributes to a variety of biological processes in the course of oogenesis, oocyte maturation, egg fertilization, and early embryogenesis in Xenopus. Our current special interest is to evaluate the hypothesis that the oocyte/egg membrane microdomain (MD)-associated uroplakin III-Src system is responsible for mediating sperm-egg membrane interaction/fusion signal to the oocyte/egg cytoplasm to initiate embryonic and zygotic development in this species. Therefore, this chapter contains a brief introduction to biology of oocytes and eggs in Xenopus and addresses the following questions: (1) What is oocyte/egg MD? (2) Why do we study oocyte/egg MD? (3) How to manipulate oocyte/egg MD? (4) What has been achieved by oocyte/egg MD studies? (5) What are the next steps in oocyte/egg MD studies?
Collapse
Affiliation(s)
- Ken-Ichi Sato
- Faculty of Life Sciences, Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan.
| | - Alexander A Tokmakov
- Faculty of Life Sciences, Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
7
|
Zhang C, Liu XR, Cao YC, Tian JL, Zhen D, Luo XF, Wang XM, Tian JH, Gao JM. Mammalian target of rapamycin/eukaryotic initiation factor 4F pathway regulates follicle growth and development of theca cells in mice. Reprod Fertil Dev 2018; 29:768-777. [PMID: 26748416 DOI: 10.1071/rd15230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/26/2015] [Indexed: 01/25/2023] Open
Abstract
The aim of the present study was to clarify the roles of the mammalian target of rapamycin (mTOR) signalling pathway in follicular growth and development of thecal cells. Using in vivo-grown and in vitro-cultured ovaries, histological changes were evaluated using haematoxylin and eosin (HE) staining. Differentially expressed genes (DEGs) from 0 day post partum (d.p.p.) to 8 d.p.p. ovaries were screened by microarray and verified by quantitative real-time polymerase chain reaction. Forty-two DEGs related to cell proliferation and differentiation were screened out, with most DEGs being related to the to mTOR signalling pathway. Then, 3 d.p.p. ovaries were retrieved and used to verify the role of mTOR signalling in follicle and thecal cell development using its activators (Ras homologue enriched in brain (Rheb) and GTP) and inhibitor (rapamycin). The development of follicles and thecal cells was significantly impaired in ovaries cultured in vitro Day 3 to Day 8. In in vitro-cultured ovaries, Rheb and GTP (is 100ngmL-1 Rheb and 500ngmL-1 GTP for 48h) significantly increased follicle diameter, the percentage of primary and secondary follicles and the umber of thecal cells, and upregulated expression of mTOR, phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), eukaryotic initiation factor (eIF) 4F and cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1). Rapamycin (10nM rapamycin for 24h) had opposite effects to those of Rheb and GTP, and partly abrogated (significant) the effects of Rheb and GTP when added to the culture in combination with these drugs. Thus, mTOR signalling plays an important role in follicle growth and thecal cell development.
Collapse
Affiliation(s)
- Chao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiao-Ran Liu
- Galactophore Breast Clinic, Peking University School of Oncology, Beijing 100142, China
| | - Yong-Chun Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jin-Ling Tian
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Di Zhen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiao-Fei Luo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xin-Mei Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jian-Hui Tian
- College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Jian-Ming Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
8
|
Xu W, Li H, Zhang N, Dong Z, Wang N, Shao C, Chen S. Expression analysis and characterization of an autosome-localized tesk1 gene in half-smooth tongue sole (Cynoglossus semilaevis). Gene 2016; 582:161-7. [PMID: 26869317 DOI: 10.1016/j.gene.2016.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/21/2016] [Accepted: 02/04/2016] [Indexed: 01/29/2023]
Abstract
Testis-specific protein kinase 1 (tesk1) represents a conserved gene family functioning in many cellular processes. In this study, we cloned and characterized an autosome-localized tesk1 gene (Altesk1) from Cynoglossus semilaevis. The open reading frame consists of 2088 nucleotides and encodes a 665 amino acid polypeptide. Phylogenetic analyses show that vertebrate Tesk1s are divided into two clusters based on protein length and AlTesk1 belongs to "long-type" group. Semi-quantitative PCR reveals that Altesk1 is predominantly expressed in ovary, despite of relatively low detection in some other tissues. Among different development stages, Altesk1 transcripts are only observed in ovary samples of 210-day and 1-year fish. In situ hybridization analyses have further confirmed its major localization in oocyte cells. Comparison of methylation patterns in different sexual genotypes reveals the low methylation level of Altesk1 promoter in female, which is consistent with Altesk1 high expression level in female. Taken together, this is the first time that tesk1 gene has been found to show female-biased expression and in view of this, we postulate that AlTesk1 might be involved in some cellular processes specific in ovary, e.g. oogenesis.
Collapse
Affiliation(s)
- Wenteng Xu
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hailong Li
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ning Zhang
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhongdian Dong
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
9
|
Genome-Wide Gene Expression Analysis Identifies the Proto-oncogene Tyrosine-Protein Kinase Src as a Crucial Virulence Determinant of Infectious Laryngotracheitis Virus in Chicken Cells. J Virol 2015; 90:9-21. [PMID: 26446601 PMCID: PMC4702564 DOI: 10.1128/jvi.01817-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Given the side effects of vaccination against infectious laryngotracheitis (ILT), novel strategies for ILT control and therapy are urgently needed. The modulation of host-virus interactions is a promising strategy to combat the virus; however, the interactions between the host and avian ILT herpesvirus (ILTV) are unclear. Using genome-wide transcriptome studies in combination with a bioinformatic analysis, we identified proto-oncogene tyrosine-protein kinase Src (Src) to be an important modulator of ILTV infection. Src controls the virulence of ILTV and is phosphorylated upon ILTV infection. Functional studies revealed that Src prolongs the survival of host cells by increasing the threshold of virus-induced cell death. Therefore, Src is essential for viral replication in vitro and in ovo but is not required for ILTV-induced cell death. Furthermore, our results identify a positive-feedback loop between Src and the tyrosine kinase focal adhesion kinase (FAK), which is necessary for the phosphorylation of either Src or FAK and is required for Src to modulate ILTV infection. To the best of our knowledge, we are the first to identify a key host regulator controlling host-ILTV interactions. We believe that our findings have revealed a new potential therapeutic target for ILT control and therapy. IMPORTANCE Despite the extensive administration of live attenuated vaccines starting from the mid-20th century and the administration of recombinant vaccines in recent years, infectious laryngotracheitis (ILT) outbreaks due to avian ILT herpesvirus (ILTV) occur worldwide annually. Presently, there are no drugs or control strategies that effectively treat ILT. Targeting of host-virus interactions is considered to be a promising strategy for controlling ILTV infections. However, little is known about the mechanisms governing host-ILTV interactions. The results from our study advance our understanding of host-ILTV interactions on a molecular level and provide experimental evidence that it is possible to control ILT via the manipulation of host-virus interactions.
Collapse
|
10
|
Elias D, Ditzel HJ. Fyn is an important molecule in cancer pathogenesis and drug resistance. Pharmacol Res 2015; 100:250-4. [DOI: 10.1016/j.phrs.2015.08.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023]
|
11
|
Vazquez-Levin MH, Marín-Briggiler CI, Caballero JN, Veiga MF. Epithelial and neural cadherin expression in the mammalian reproductive tract and gametes and their participation in fertilization-related events. Dev Biol 2015; 401:2-16. [DOI: 10.1016/j.ydbio.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/23/2014] [Accepted: 12/28/2014] [Indexed: 01/10/2023]
|