1
|
Zhang C, Liu C, Feng W. A Long-Term Clearing Cranial Window for Longitudinal Imaging of Cortical and Calvarial Ischemic Injury through the Intact Skull. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105893. [PMID: 35396810 PMCID: PMC9189679 DOI: 10.1002/advs.202105893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/01/2022] [Indexed: 05/26/2023]
Abstract
Skull is a reservoir for supplying immune cells that mediate brain immune surveillance. However, during intravital optical imaging of brain, conventional cranial windows requiring skull thinning or removal disrupt brain immunity integrity. Here, a novel long-term clearing cranial window (LCCW) based on the intact skull, dedicated to chronic skull transparency maintenance, is proposed. It significantly improves optical imaging resolution and depth, by which the cortical and calvarial vascular injury and regeneration processes after ischemic injury are longitudinally monitored in awake mice. Results show that calvarial blood vessels recover earlier than the cortex. And the transcriptome analysis reveals that gene expression patterns and immune cells abundances exist substantial differences between brain and skull after ischemic injury, which may be one of the causes for the time lag between their vascular recovery. These findings bring great enlightenment to vascular regeneration and reconstruction. Moreover, LCCW provides a minimally invasive approach for imaging the brain and skull bone marrow.
Collapse
Affiliation(s)
- Chao Zhang
- Zhanjiang Institute of Clinical MedicineCentral People's Hospital of ZhanjiangZhanjiangGuangdong524045China
- Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdong524045China
| | - Chun‐Jie Liu
- Center for Computational and Genomic MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPA19104USA
| | - Wei Feng
- Zhanjiang Institute of Clinical MedicineCentral People's Hospital of ZhanjiangZhanjiangGuangdong524045China
- Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdong524045China
| |
Collapse
|
2
|
Li W, Liu YH, Estrada H, Rebling J, Reiss M, Galli S, Nombela-Arrieta C, Razansky D. Tracking Strain-Specific Morphogenesis and Angiogenesis of Murine Calvaria with Large-Scale Optoacoustic and Ultrasound Microscopy. J Bone Miner Res 2022; 37:1032-1043. [PMID: 35220594 PMCID: PMC9311448 DOI: 10.1002/jbmr.4533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/30/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
Abstract
Skull bone development is a dynamic and well-coordinated process playing a key role in maturation and maintenance of the bone marrow (BM), fracture healing, and progression of diseases such as osteoarthritis or osteoporosis. At present, dynamic transformation of the growing bone (osteogenesis) as well as its vascularization (angiogenesis) remain largely unexplored due to the lack of suitable in vivo imaging techniques capable of noninvasive visualization of the whole developing calvaria at capillary-level resolution. We present a longitudinal study on skull bone development using ultrasound-aided large-scale optoacoustic microscopy (U-LSOM). Skull bone morphogenesis and microvascular growth patterns were monitored in three common mouse strains (C57BL/6J, CD-1, and Athymic Nude-Foxn1nu) at the whole-calvaria scale over a 3-month period. Strain-specific differences in skull development were revealed by quantitative analysis of bone and vessel parameters, indicating the coupling between angiogenesis and osteogenesis during skull bone growth in a minimally invasive and label-free manner. The method further enabled identifying BM-specific sinusoidal vessels, and superficial skull vessels penetrating into BM compartments. Our approach furnishes a new high-throughput longitudinal in vivo imaging platform to study morphological and vascular skull alterations in health and disease, shedding light on the critical links between blood vessel formation, skull growth, and regeneration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Weiye Li
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Yu-Hang Liu
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Johannes Rebling
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Reiss
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Serena Galli
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Jung Y, Spencer JA, Raphael AP, Wu JW, Alt C, Runnels JR, Geiger B, Lin CP. Intravital Imaging of Mouse Bone Marrow: Hemodynamics and Vascular Permeability. Methods Mol Biol 2018; 1763:11-22. [PMID: 29476484 DOI: 10.1007/978-1-4939-7762-8_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The bone marrow is a unique microenvironment where blood cells are produced and released into the circulation. At the top of the blood cell lineage are the hematopoietic stem cells (HSC), which are thought to reside in close association with the bone marrow vascular endothelial cells (Morrison and Scadden, Nature 505:327-334, 2014). Recent efforts at characterizing the HSC niche have prompted us to make close examinations of two distinct types of blood vessel in the bone marrow, the arteriolar vessels originating from arteries and sinusoidal vessels connected to veins. We found the two vessel types to exhibit different vascular permeabilites, hemodynamics, cell trafficking behaviors, and oxygen content (Itkin et al., Nature 532:323-328, 2016; Spencer et al., Nature 508:269-273, 2014). Here, we describe a method to quantitatively measure the permeability and hemodynamics of arterioles and sinusoids in murine calvarial bone marrow using intravital microscopy.
Collapse
Affiliation(s)
- Yookyung Jung
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Joel A Spencer
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Regenerative Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,School of Engineering, University of California Merced, Merced, CA, 95343, USA
| | - Anthony P Raphael
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Dermatology Research Centre, Translational Research Institute, School of Medicine, The University of Queensland, St Lucia, Australia
| | - Juwell W Wu
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Judith R Runnels
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Briaira Geiger
- Department of Chemistry, Richard Stockton College of New Jersey, Galloway, NJ, USA
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Longitudinal intravital imaging of the femoral bone marrow reveals plasticity within marrow vasculature. Nat Commun 2017; 8:2153. [PMID: 29255233 PMCID: PMC5735140 DOI: 10.1038/s41467-017-01538-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023] Open
Abstract
The bone marrow is a central organ of the immune system, which hosts complex interactions of bone and immune compartments critical for hematopoiesis, immunological memory, and bone regeneration. Although these processes take place over months, most existing imaging techniques allow us to follow snapshots of only a few hours, at subcellular resolution. Here, we develop a microendoscopic multi-photon imaging approach called LIMB (longitudinal intravital imaging of the bone marrow) to analyze cellular dynamics within the deep marrow. The approach consists of a biocompatible plate surgically fixated to the mouse femur containing a gradient refractive index lens. This microendoscope allows highly resolved imaging, repeatedly at the same regions within marrow tissue, over months. LIMB reveals extensive vascular plasticity during bone healing and steady-state homeostasis. To our knowledge, this vascular plasticity is unique among mammalian tissues, and we expect this insight will decisively change our understanding of essential phenomena occurring within the bone marrow. Longitudinal imaging of bone marrow would shed insight into long-term cellular dynamics within this compartment. Here, the authors develop a multi-photon imaging approach for the mouse femur and reveal extensive vascular plasticity within the bone marrow during bone healing and steady-state homeostasis.
Collapse
|
5
|
Tokarz D, Cisek R, Wein MN, Turcotte R, Haase C, Yeh SCA, Bharadwaj S, Raphael AP, Paudel H, Alt C, Liu TM, Kronenberg HM, Lin CP. Intravital imaging of osteocytes in mouse calvaria using third harmonic generation microscopy. PLoS One 2017; 12:e0186846. [PMID: 29065178 PMCID: PMC5655444 DOI: 10.1371/journal.pone.0186846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/09/2017] [Indexed: 01/27/2023] Open
Abstract
Osteocytes are the most abundant cell in the bone, and have multiple functions including mechanosensing and regulation of bone remodeling activities. Since osteocytes are embedded in the bone matrix, their inaccessibility makes in vivo studies problematic. Therefore, a non-invasive technique with high spatial resolution is desired. The purpose of this study is to investigate the use of third harmonic generation (THG) microscopy as a noninvasive technique for high-resolution imaging of the lacunar-canalicular network (LCN) in live mice. By performing THG imaging in combination with two- and three-photon fluorescence microscopy, we show that THG signal is produced from the bone-interstitial fluid boundary of the lacuna, while the interstitial fluid-osteocyte cell boundary shows a weaker THG signal. Canaliculi are also readily visualized by THG imaging, with canaliculi oriented at small angles relative to the optical axis exhibiting stronger signal intensity compared to those oriented perpendicular to the optical axis (parallel to the image plane). By measuring forward- versus epi-detected THG signals in thinned versus thick bone samples ex vivo, we found that the epi-collected THG from the LCN of intact bone contains a superposition of backward-directed and backscattered forward-THG. As an example of a biological application, THG was used as a label-free imaging technique to study structural variations in the LCN of live mice deficient in both histone deacetylase 4 and 5 (HDAC4, HDAC5). Three-dimensional analyses were performed and revealed statistically significant differences between the HDAC4/5 double knockout and wild type mice in the number of osteocytes per volume and the number of canaliculi per lacunar surface area. These changes in osteocyte density and dendritic projections occurred without differences in lacunar size. This study demonstrates that THG microscopy imaging of the LCN in live mice enables quantitative analysis of osteocytes in animal models without the use of dyes or physical sectioning.
Collapse
Affiliation(s)
- Danielle Tokarz
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Cisek
- Department of Physical and Chemical Sciences, University of Toronto, Mississauga, Ontario, Canada
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Raphaël Turcotte
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christa Haase
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shu-Chi A. Yeh
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Srinidhi Bharadwaj
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anthony P. Raphael
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hari Paudel
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Clemens Alt
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tzu-Ming Liu
- Institute of Biomedical Engineering and Molecular Imaging Center, National Taiwan University, Taipei, Taiwan. Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charles P. Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Turcotte R, Wu JW, Lin CP. Intravital multiphoton photoconversion with a cell membrane dye. JOURNAL OF BIOPHOTONICS 2017; 10:206-210. [PMID: 27433967 DOI: 10.1002/jbio.201600077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
Photoconversion, an irreversible shift in a fluorophore emission spectrum after light exposure, is a powerful tool for marking cellular and subcellular compartments and tracking their dynamics in vivo. This paper reports on the photoconversion properties of Di-8-ANEPPS, a commercially available membrane dye. When illuminated with near-infrared femtosecond laser pulses, Di-8-ANEPPS undergoes multiphoton photoconversion as indicated by the supralinear dependence of the conversion rate ρpc on the incident power (ρpc∝Iexc2.27), and by the ability to photoconvert a thin optical section in a three-dimensional matrix. The characteristic emission spectrum changed from red to blue, and ratiometric analysis on single cells in vitro revealed a 65-fold increase in the blue to red wavelength ratio after photoconversion. The spectral shift is preserved in vivo for hours, making Di-8-ANEPPS a useful dye for intravital cell marking and tracking applications.
Collapse
Affiliation(s)
- Raphaël Turcotte
- Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, CPZN 8238, 185 Cambridge Street, Boston, MA 02114, USA
| | - Juwell W Wu
- Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, CPZN 8238, 185 Cambridge Street, Boston, MA 02114, USA
| | - Charles P Lin
- Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, CPZN 8238, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
7
|
Ebina W, Rossi DJ. Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J 2015; 34:694-709. [PMID: 25712209 DOI: 10.15252/embj.201490804] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs.
Collapse
Affiliation(s)
- Wataru Ebina
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA Department of Pediatrics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|