1
|
Ling H, Wang XC, Liu ZY, Mao S, Yang JJ, Sha JM, Tao H. Noncoding RNA network crosstalk in organ fibrosis. Cell Signal 2024; 124:111430. [PMID: 39312989 DOI: 10.1016/j.cellsig.2024.111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Fibrosis is a process involving excessive accumulation of extracellular matrix components, the severity of which interferes with the function of the organ in question. With the advances in RNA sequencing and in-depth molecular studies, a large number of current studies have pointed out the irreplaceable role of non-coding RNAs (ncRNAs) in the pathophysiological development of organ fibrosis. Here, by summarizing the results of a large number of studies on the interactions between ncRNAs, some studies have found that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), among others, are able to act as sponges or decoy decoys for microRNAs (miRNAs), act as competing endogenous RNAs (ceRNAs) to regulate the expression of miRNAs, and subsequently act on different mRNA targets, playing a role in the development of fibrosis in a wide variety of organs, including the heart, liver, kidneys, and spleen. parenchymal organs, including heart, liver, kidney, and spleen, play important roles in the development of fibrosis. These findings elucidate the intricate involvement of the lncRNA/circRNA-miRNA-mRNA axis in the pathophysiological processes underpinning organ fibrosis, thereby enhancing our comprehension of the onset and progression of this condition. Furthermore, they introduce novel potential therapeutic targets within the realm of ncRNA-based therapeutics, offering avenues for the development of innovative drugs aimed at mitigating or reversing the effects of organ fibrosis.
Collapse
Affiliation(s)
- Hui Ling
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xian-Chen Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Ji-Ming Sha
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
2
|
Abid AI, Conzatti G, Toti F, Anton N, Vandamme T. Mesenchymal stem cell-derived exosomes as cell free nanotherapeutics and nanocarriers. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102769. [PMID: 38914247 DOI: 10.1016/j.nano.2024.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Many strategies for regenerating the damaged tissues or degenerating cells are employed in regenerative medicine. Stem cell technology is a modern strategy of the recent approaches, particularly the use of mesenchymal stem cells (MCSs). The ability of MSCs to differentiate as well as their characteristic behaviour as paracrine effector has established them as key elements in tissue repair. Recently, extracellular vesicles (EVs) shed by MSCs have emerged as a promising cell free therapy. This comprehensive review encompasses MSCs-derived exosomes and their therapeutic potential as nanotherapeutics. We also discuss their potency as drug delivery nano-carriers in comparison with liposomes. A better knowledge of EVs behaviour in vivo and of their mechanism of action are key to determine parameters of an optimal formulation in pilot studies and to establish industrial processes.
Collapse
Affiliation(s)
- Ali Imran Abid
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France
| | - Guillaume Conzatti
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France.
| | - Florence Toti
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Nicolas Anton
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Thierry Vandamme
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France.
| |
Collapse
|
3
|
Lu ZJ, Pan QL, Lin FX. Epigenetic modifications of inflammation in spinal cord injury. Biomed Pharmacother 2024; 179:117306. [PMID: 39153436 DOI: 10.1016/j.biopha.2024.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Spinal cord injury (SCI) is a central nervous system injury that leads to neurological dysfunction or paralysis, which seriously affects patients' quality of life and causes a heavy social and economic burden. The pathological mechanism of SCI has not been fully revealed, resulting in unsatisfactory clinical treatment. Therefore, more research is urgently needed to reveal its precise pathological mechanism. Numerous studies have shown that inflammation is closely related to various pathological processes in SCI. Inflammatory response is an important pathological process leading to secondary injury, and sustained inflammatory response can exacerbate the injury and hinder the recovery of neurological function after injury. Epigenetic modification is considered to be an important regulatory mechanism in the pathological process of many diseases. Epigenetic modification mainly affects the function and characteristics of genes through the reversibility of mechanisms such as DNA methylation, histone modification, and regulation of non-coding RNA, thus having a significant impact on the pathological process of diseases and the survival state of the body. Recently, the role of epigenetic modification in the inflammatory response of SCI has gradually entered the field of view of researchers, and epigenetic modification may be a potential means to treat SCI. In this paper, we review the effects and mechanisms of different types of epigenetic modifications (including histone modifications, DNA methylation, and non-coding RNAs) on post-SCI inflammation and their potential therapeutic effects on inflammation to improve our understanding of the secondary SCI stage. This review aims to help identify new markers, signaling pathways and targeted drugs, and provide theoretical basis and new strategies for the diagnosis and treatment of SCI.
Collapse
Affiliation(s)
- Zhi-Jun Lu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
4
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
5
|
Fahad M, Tariq L, Muhammad S, Wu L. Underground communication: Long non-coding RNA signaling in the plant rhizosphere. PLANT COMMUNICATIONS 2024; 5:100927. [PMID: 38679911 PMCID: PMC11287177 DOI: 10.1016/j.xplc.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral gene-expression regulators underlying plant growth, development, and adaptation. To adapt to the heterogeneous and dynamic rhizosphere, plants use interconnected regulatory mechanisms to optimally fine-tune gene-expression-governing interactions with soil biota, as well as nutrient acquisition and heavy metal tolerance. Recently, high-throughput sequencing has enabled the identification of plant lncRNAs responsive to rhizosphere biotic and abiotic cues. Here, we examine lncRNA biogenesis, classification, and mode of action, highlighting the functions of lncRNAs in mediating plant adaptation to diverse rhizosphere factors. We then discuss studies that reveal the significance and target genes of lncRNAs during developmental plasticity and stress responses at the rhizobium interface. A comprehensive understanding of specific lncRNAs, their regulatory targets, and the intricacies of their functional interaction networks will provide crucial insights into how these transcriptomic switches fine-tune responses to shifting rhizosphere signals. Looking ahead, we foresee that single-cell dissection of cell-type-specific lncRNA regulatory dynamics will enhance our understanding of the precise developmental modulation mechanisms that enable plant rhizosphere adaptation. Overcoming future challenges through multi-omics and genetic approaches will more fully reveal the integral roles of lncRNAs in governing plant adaptation to the belowground environment.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sajid Muhammad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Deng RM, Zhou J. Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting. Mol Neurobiol 2024; 61:3409-3426. [PMID: 37991700 DOI: 10.1007/s12035-023-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver trauma, resection, and transplantation that can lead to liver dysfunction and failure. Scholars have proposed a variety of liver protection methods aimed at reducing ischemia-reperfusion damage, but there is still a lack of effective treatment methods, which urgently needs to find new effective treatment methods for patients. Many studies have reported that signaling pathway plays a key role in HIRI pathological process and liver function recovery mechanism, among which nuclear transfer factor-κB (NF-κB) signaling pathway is one of the signal transduction closely related to disease. NF-κB pathway is closely related to HIRI pathologic process, and inhibition of this pathway can delay oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction. In addition, NF-κB can also interact with PI3K/Akt, MAPK, and Nrf2 signaling pathways to participate in HIRI regulation. Based on the role of NF-κB pathway in HIRI, it may be a potential target pathway for HIRI. This review emphasizes the role of inhibiting the NF-κB signaling pathway in oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction in HIRI, as well as the effects of related drugs or inhibitors targeting NF-κB on HIRI. The objective of this review is to elucidate the role and mechanism of NF-κB pathway in HIRI, emphasize the important role of NF-κB pathway in the prevention and treatment of HIRI, and provide a theoretical basis for the target NF-κB pathway as a therapy for HIRI.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Juan Zhou
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
7
|
Wang B, Chen Q, Zou X, Zheng P, Zhu J. Advances in non-coding RNA in tendon injuries. Front Genet 2024; 15:1396195. [PMID: 38836038 PMCID: PMC11148651 DOI: 10.3389/fgene.2024.1396195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Tendons serve as important weight-bearing structures that smoothly transfer forces from muscles to skeletal parts, allowing contracted muscle movements to be translated into corresponding joint movements. For body mechanics, tendon tissue plays an important role. If the tendons are damaged to varying degrees, it can lead to disability or pain in patients. That is to say, tendon injuries havea significant impact on quality of life and deserve our high attention. Compared to other musculoskeletal tissues, tendons are hypovascular and hypo-cellular, and therefore have a greater ability to heal, this will lead to a longer recovery period after injury or even disability, which will significantly affect the quality of life. There are many causes of tendon injury, including trauma, genetic factors, inflammation, aging, and long-term overuse, and the study of related mechanisms is of great significance. Currently, tendon there are different treatment modalities, like injection therapy and surgical interventions. However, they have a high failure rate due to different reasons, among which the formation of adhesions severely weakens the tissue strength, affecting the functional recovery and the patient's quality of life. A large amount of data has shown that non coding RNAs can play a huge role in this field, thus attracting widespread attention from researchers from various countries. This review summarizes the relevant research progress on non-coding RNAs in tendon injuries, providing new ideas for a deeper understanding of tendon injuries and exploring new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Bin Wang
- Department of Plastics, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, China
| | - Qiang Chen
- Center for Plastic and Reconstructive Surgery, Department of Hand and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodi Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Zheng
- Department of Plastics, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, China
| | - Jie Zhu
- Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
8
|
Cui H, Wang Y, Ma J, Zhou L, Li G, Li Y, Sun Y, Shen J, Ma T, Wang Q, Feng X, Dong B, Yang P, Li Y, Ma X. Advances in exosome modulation of ferroptosis for the treatment of orthopedic diseases. Pathol Res Pract 2024; 257:155312. [PMID: 38663177 DOI: 10.1016/j.prp.2024.155312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Current treatments for orthopaedic illnesses frequently result in poor prognosis, treatment failure, numerous relapses, and other unpleasant outcomes that have a significant impact on patients' quality of life. Cell-free therapy has emerged as one of the most promising options in recent decades for improving the status quo. As a result, using exosomes produced from various cells to modulate ferroptosis has been proposed as a therapeutic method for the condition. Exosomes are extracellular vesicles that secrete various bioactive chemicals that influence disease treatment and play a role in the genesis and progression of orthopaedic illnesses. Ferroptosis is a recently defined kind of controlled cell death typified by large iron ion buildup and lipid peroxidation. An increasing number of studies indicate that ferroptosis plays a significant role in orthopaedic illnesses. Exosomes, as intercellular information transfer channels, have been found to play a significant role in the regulation of ferroptosis processes. Furthermore, accumulating research suggests that exosomes can influence the course of many diseases by regulating ferroptosis in injured cells. In order to better understand the processes by which exosomes govern ferroptosis in the therapy of orthopaedic illnesses. This review discusses the biogenesis, secretion, and uptake of exosomes, as well as the mechanisms of ferroptosis and exosomes in the therapy of orthopaedic illnesses. It focuses on recent research advances and exosome mechanisms in regulating iron death for the therapy of orthopaedic illnesses. The present state of review conducted both domestically and internationally is elucidated and anticipated as a viable avenue for future therapy in the field of orthopaedics.
Collapse
Affiliation(s)
- Hongwei Cui
- Tianjin Medical University Orthopedic Clinical College, Tianjin 300050, China; Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yan Wang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Jianxiong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China.
| | - Liyun Zhou
- Tianjin Medical University Orthopedic Clinical College, Tianjin 300050, China; Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Guang Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yiyang Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yadi Sun
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Jiahui Shen
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Tiancheng Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Qiyu Wang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Xiaotian Feng
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Benchao Dong
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Peichuan Yang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yan Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Xinlong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| |
Collapse
|
9
|
Ding Y, Chen Q. The NF-κB Pathway: a Focus on Inflammatory Responses in Spinal Cord Injury. Mol Neurobiol 2023; 60:5292-5308. [PMID: 37286724 DOI: 10.1007/s12035-023-03411-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Spinal cord injury (SCI) is a type of central nervous system trauma that can lead to severe nerve injury. Inflammatory reaction after injury is an important pathological process leading to secondary injury. Long-term stimulation of inflammation can further deteriorate the microenvironment of the injured site, leading to the deterioration of neural function. Understanding the signaling pathways that regulate responses after SCI, especially inflammatory responses, is critical for the development of new therapeutic targets and approaches. Nuclear transfer factor-κB (NF-κB) has long been recognized as a key factor in regulating inflammatory responses. The NF-κB pathway is closely related to the pathological process of SCI. Inhibition of this pathway can improve the inflammatory microenvironment and promote the recovery of neural function after SCI. Therefore, the NF-κB pathway may be a potential therapeutic target for SCI. This article reviews the mechanism of inflammatory response after SCI and the characteristics of NF-κB pathway, emphasizing the effect of inhibiting NF-κB on the inflammatory response of SCI to provide a theoretical basis for the biological treatment of SCI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
10
|
Huang R, Sun LJ. Identification of circulating lncRNA in chronic kidney disease based on bioinformatics analysis. Exp Biol Med (Maywood) 2022; 247:1466-1478. [PMID: 35757995 PMCID: PMC9493766 DOI: 10.1177/15353702221104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chronic kidney disease (CKD) is a high mortality disease and generally remains asymptomatic in the early stages. Long non-coding RNA (lncRNA) is defined as a non-protein-coding transcript more than 200 nucleotides which participate in numerous biological processes and have been identified as novel diagnostic markers for many diseases. Detection of circulating lncRNAs is a rapidly evolving, new area of molecular diagnosis. The purpose of our research was to identify circulating lncRNA expression profiles and possible molecular mechanisms involved in CKD. Blood samples were obtained from patients with CKD and healthy volunteers, and high-throughput sequencing was performed to identify differentially expressed (DE) lncRNAs and mRNAs. DE lncRNAs and mRNAs in peripheral blood mononuclear cells (PBMCs) were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) to ensure the reliability and validity of RNA-seq data. Bioinformatics analysis was used to obtain biological functions and key pathways related to the pathogenesis of CKD. The interaction and co-expression functional networks for DE lncRNAs and mRNAs were also constructed. Our data showed that of the 425 DE lncRNAs detected, 196 lncRNAs were upregulated, while that of 229 lncRNAs were downregulated. A total of 433 DE mRNAs were identified in patients with CKD compared to healthy individuals. GO analysis revealed that DE lncRNAs were highly correlated with binding and pathway regulation. KEGG analysis suggested that DE lncRNAs were obviously enriched in regulatory pathways, such as antigen processing and presentation. We successfully constructed a potential DE lncRNA-mRNA co-expression network and analyzed the target genes of DE lncRNAs to predict cis- and trans-regulation in CKD. 100 lncRNAs that corresponded to 14 transcription factors (TFs) were identified in the TF-lncRNA binary network. Our findings on the lncRNA expression profiles and functional networks may help to interpret the possible molecular mechanisms implied in the pathogenesis of CKD; the results demonstrated that lncRNAs could potentially to be used as diagnostic biomarkers in CKD.
Collapse
|
11
|
Zhang H, Chen L, Wang Z, Sun Z, Shan Y, Li Q, Qi L, Wang H, Chen Y. Long noncoding RNA KCNQ1OT1 inhibits osteoclast differentiation by regulating the miR-128-3p/NFAT5 axis. Aging (Albany NY) 2022; 14:4486-4499. [PMID: 35587369 PMCID: PMC9186780 DOI: 10.18632/aging.204088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022]
Abstract
Noncoding RNAs play an important role in regulating osteoclast differentiation. We investigated whether and how potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1), a long noncoding RNA, regulates osteoclast differentiation. We found that the expression of KCNQ1OT1 was downregulated in osteoporotic bone tissue. Then transfection of KCNQ1OT1 overexpression vectors or small interfering RNAs showed that the proliferation, migration, and osteoclast differentiation of RAW 264.7 cells were inhibited by KCNQ1OT1 upregulation, while they were promoted by KCNQ1OT1 knockdown. Interestingly, we found and confirmed that miR-128-3p was a target of KCNQ1OT1 using online databases, dual luciferase reporter assays and quantitative real-time polymerase chain reaction, and that it inhibited the expression of miR-128-3p. Moreover, we confirmed that miR-128-3p directly targeted nuclear factor of activated T cell 5 (NFAT5), a protein that combines with osteoprotegerin and thus regulates osteoclastogenesis with the presence of the receptor activator of nuclear factor κB ligand. Furthermore, we demonstrated that both the knockdown of KCNQ1OT1 and the overexpression of miR-128-3p attenuate the expression of NFAT5, while upregulating the osteoclastogenesis markers c-Fos, NFATc1, and Ctsk. The results from overexpression of KCNQ1OT1 and the inhibition of miR-128-3p were contrary to the above. Finally, we found that the inhibition of osteoclast differentiation by KCNQ1OT1 overexpression could be rescued using a miR-128-3p mimic, while the enhancement of migration and osteoclast differentiation by si-NFAT5 could be reversed with a miR-128-3p inhibitor. These results suggested that KCNQ1OT1 regulates the osteoclast differentiation via the miR-128-3p/NFAT5 axis.
Collapse
Affiliation(s)
- Hengshuo Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Lu Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Ziyu Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Zhenqian Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yu Shan
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Qinghui Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Linzeng Qi
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
12
|
Zhou HJ, Wang LQ, Zhan RY, Zheng XJ, Zheng JS. lncRNA MEG3 restrained the M1 polarization of microglia in acute spinal cord injury through the HuR/A20/NF-κB axis. Brain Pathol 2022; 32:e13070. [PMID: 35338543 PMCID: PMC9425005 DOI: 10.1111/bpa.13070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/31/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022] Open
Abstract
The M1 polarization of microglia and neuroinflammation restrict the treatment of acute spinal cord injury (ASCI), and long non‐coding ribonucleic acid (lncRNA) maternally expressed gene 3 (MEG3) expression is lessened in ASCI. However, the function and mechanism of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI are unclear. The expressions of lncRNA MEG3 in ASCI mouse spinal cord tissues and lipopolysaccharide (LPS)‐treated primary microglia and BV2 cells were quantified through a quantitative real‐time polymerase chain reaction. In‐vitro assays were conducted to explore the function of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI. RNA degradation, RNA immunoprecipitation, RNA pull‐down, cycloheximide‐chase, and ubiquitination analyses were carried out to probe into the mechanism of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI. The lncRNA MEG3 expression was lessened in the ASCI mouse spinal cord tissues and LPS‐treated primary microglia and BV2 cells, and the overexpression of lncRNA MEG3 restrained the M1 polarization of microglia and the neuroinflammation by regulating the NF‐κB signaling pathway. For the investigation of the potential mechanism of such, the overexpression of lncRNA MEG3 restrained the M1 polarization of microglia through the HuR/A20/NF‐κB axis and boosted the motor function recovery and neuroinflammation relief in the mice with SCI. The overexpression of lncRNA MEG3 restrained the M1 polarization of microglia through the HuR/A20/NF‐κB axis.
Collapse
Affiliation(s)
- Heng-Jun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Qing Wang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ren-Ya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiu-Jue Zheng
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie-Sheng Zheng
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Mesenchymal Stem Cell Derived Exosomes Suppress Neuronal Cell Ferroptosis Via lncGm36569/miR-5627-5p/FSP1 Axis in Acute Spinal Cord Injury. Stem Cell Rev Rep 2022; 18:1127-1142. [DOI: 10.1007/s12015-022-10327-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 02/08/2023]
|
14
|
Focus on the Mechanisms and Functions of Pyroptosis, Inflammasomes, and Inflammatory Caspases in Infectious Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2501279. [PMID: 35132346 PMCID: PMC8817853 DOI: 10.1155/2022/2501279] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells can initiate several distinct self-destruction mechanisms to display essential roles for the homeostasis maintenance, development, and survival of an organism. Pyroptosis, a key response mode in innate immunity, also referred to as caspase-1-dependent proinflammatory programmed necrotic cell death activated by human caspase-1/4/5, or mouse caspase-1/11, plays indispensable roles in response to cytoplasmic insults and immune defense against infectious diseases. These inflammatory caspases are employed by the host to eliminate pathogen infections such as bacteria, viruses, protozoans, and fungi. Gasdermin D requires to be cleaved and activated by these inflammatory caspases to trigger the pyroptosis process. Physiological rupture of cells results in the release of proinflammatory cytokines, the alarmins IL-1β and IL-18, symbolizing the inflammatory potential of pyroptosis. Moreover, long noncoding RNAs play direct or indirect roles in the upstream of the pyroptosis trigger pathway. Here, we review in detail recently acquired insights into the central roles of inflammatory caspases, inflammasomes, and pyroptosis, as well as the crosstalk between pyroptosis and long noncoding RNAs in mediating infection immunity and pathogen clearance.
Collapse
|
15
|
Zarantonello G, Arnoldi M, Filosi M, Tebaldi T, Spirito G, Barbieri A, Gustincich S, Sanges R, Domenici E, Di Leva F, Biagioli M. Natural SINEUP RNAs in Autism Spectrum Disorders: RAB11B-AS1 Dysregulation in a Neuronal CHD8 Suppression Model Leads to RAB11B Protein Increase. Front Genet 2021; 12:745229. [PMID: 34880900 PMCID: PMC8647803 DOI: 10.3389/fgene.2021.745229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
CHD8 represents one of the highest confidence genetic risk factors implied in Autism Spectrum Disorders, with most mutations leading to CHD8 haploinsufficiency and the insurgence of specific phenotypes, such as macrocephaly, facial dysmorphisms, intellectual disability, and gastrointestinal complaints. While extensive studies have been conducted on the possible consequences of CHD8 suppression and protein coding RNAs dysregulation during neuronal development, the effects of transcriptional changes of long non-coding RNAs (lncRNAs) remain unclear. In this study, we focused on a peculiar class of natural antisense lncRNAs, SINEUPs, that enhance translation of a target mRNA through the activity of two RNA domains, an embedded transposable element sequence and an antisense region. By looking at dysregulated transcripts following CHD8 knock down (KD), we first identified RAB11B-AS1 as a potential SINEUP RNA for its domain configuration. Then we demonstrated that such lncRNA is able to increase endogenous RAB11B protein amounts without affecting its transcriptional levels. RAB11B has a pivotal role in vesicular trafficking, and mutations on this gene correlate with intellectual disability and microcephaly. Thus, our study discloses an additional layer of molecular regulation which is altered by CHD8 suppression. This represents the first experimental confirmation that naturally occurring SINEUP could be involved in ASD pathogenesis and underscores the importance of dysregulation of functional lncRNAs in neurodevelopment.
Collapse
Affiliation(s)
- Giulia Zarantonello
- Laboratory of Neuroepigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michele Arnoldi
- Laboratory of Neuroepigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michele Filosi
- Laboratory of Neurogenomic Biomarkers, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Toma Tebaldi
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, United States.,Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giovanni Spirito
- Laboratory of Computational Genomics, Area of Neuroscience, International School of Advanced Studies (SISSA), Trieste, Italy.,Central RNA Laboratory, Italian Institute of Technology (IIT), Genova, Italy
| | - Anna Barbieri
- Laboratory of Neuroepigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Italian Institute of Technology (IIT), Genova, Italy
| | - Remo Sanges
- Laboratory of Computational Genomics, Area of Neuroscience, International School of Advanced Studies (SISSA), Trieste, Italy.,Central RNA Laboratory, Italian Institute of Technology (IIT), Genova, Italy
| | - Enrico Domenici
- Laboratory of Neurogenomic Biomarkers, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Francesca Di Leva
- Laboratory of Neuroepigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marta Biagioli
- Laboratory of Neuroepigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
16
|
Bao C, He C. The role and therapeutic potential of MSC-derived exosomes in osteoarthritis. Arch Biochem Biophys 2021; 710:109002. [PMID: 34352243 DOI: 10.1016/j.abb.2021.109002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is the most common painful disease with chronic articular cartilage degeneration. The pathological process of OA is complex and characterized by the imbalance between the synthesis and catabolism of chondrocytes and extracellular matrix, leading to the progressive destruction of articular cartilage damage. Because of the self-renewal and differentiation of mesenchymal stem cells (MSCs), various exogenous MSC-based cell therapies have been developed to treat OA. Moreover, the efficacy of MSC- based therapy is mainly attributed to the paracrine of cytokines, growth factors, and exosomes. Exosomes derived from MSCs can deliver various DNAs, RNAs, proteins and lipids, thus promoting MSCs migration and cartilage repair. Therefore, MSC-derived exosomes are considered as a promising alternative therapy for OA. In this review, we summarized properties of MSC-derived exosomes and the new role of MSC-derived exosomes in the treatment of OA. We also proposed possible perspectives of MSC-derived exosomes as cell-free regenerative reagents in the treatment of OA.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Integrated Analysis of Long Non-Coding RNA and mRNA Expression Profiles in Testes of Calves and Sexually Mature Wandong Bulls ( Bos taurus). Animals (Basel) 2021; 11:ani11072006. [PMID: 34359134 PMCID: PMC8300165 DOI: 10.3390/ani11072006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The mRNAs and long non-coding RNAs axes are playing a vital role in the regulating of post-transcriptional gene expression. Thereby, elucidating the expression pattern of mRNAs and long non-coding RNAs underlying testis development is crucial. In this study, mRNA and long non-coding RNAs expression profiles were investigated in 3-month-old calves and 3-year-old mature bulls' testes by total RNA sequencing. Additionally, during the gene level analysis, 21,250 mRNAs and 20,533 long non-coding RNAs were identified. As a result, 7908 long non-coding RNAs (p-adjust < 0.05) and 5122 mRNAs (p-adjust < 0.05) were significantly differentially expressed between the distinct age groups. In addition, gene ontology and biological pathway analyses revealed that the predicted target genes are enriched in the lysine degradation, cell cycle, propanoate metabolism, adherens junction and cell adhesion molecules pathways. Correspondingly, the RT-qPCR validation results showed a strong consistency with the sequencing data. The source genes for the mRNAs (CCDC83, DMRTC2, HSPA2, IQCG, PACRG, SPO11, EHHADH, SPP1, NSD2 and ACTN4) and the long non-coding RNAs (COX7A2, COX6B2, TRIM37, PRM2, INHBA, ERBB4, SDHA, ATP6VOA2, FGF9 and TCF21) were found to be actively associated with bull sexual maturity and spermatogenesis. This study provided a comprehensive catalog of long non-coding RNAs in the bovine testes and also offered useful resources for understanding the differences in sexual development caused by the changes in the mRNA and long non-coding RNA interaction expressions between the immature and mature stages.
Collapse
|
18
|
Xu Z, Hu Q, Zang X, Zhou C, Liu D, Liu G, Hong L. Analysis of Transcripts of Uncertain Coding Potential Using RNA Sequencing During the Preattachment Phase in Goat Endometrium. DNA Cell Biol 2021; 40:998-1008. [PMID: 34115954 DOI: 10.1089/dna.2020.6463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcripts of uncertain coding potential (TUCP) are part of long noncoding RNAs, which include short open reading frames and could be translated into small peptides. In recent years, a growing number of TUCPs has been implicated in multiple biological activities, such as embryogenesis and transcriptional regulation. However, the abundance of TUCPs and their roles in goat endometrium during pregnancy recognition (day 16) remain undocumented. In this study, bioinformatics analyses were conducted to identify the differentially expressed (DE) TUCPs between pregnant animals and corresponding nonpregnant controls. A total of 5551 TUCPs were identified; 114 TUCPs were DE in goat endometrium, of which 74 TUCPs were upregulated in pregnant endometrium, whereas 40 TUCPs were downregulated. The related genes of TUCP were predicted by using coexpression and colocalization methods. In summary, 419 genes were predicted by colocalization, and 9464 genes were predicted by coexpression. The kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) analysis showed that TUCPs, which are highly expressed in pregnant endometrium, were mainly associated with endometrial remodeling, nutrient synthesis, and transportation. However, TUCPs that were lowly expressed in pregnant endometrium were mainly associated with immune tolerance, which is necessary for the protection and development of the embryo in the uterus. These findings may be used for the comparative analysis of TUCP transcripts in endometrium and assist in the selection of applicable candidate genes associated with embryo implantation for further functional analyses.
Collapse
Affiliation(s)
- Zheng Xu
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Qun Hu
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Xupeng Zang
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Chen Zhou
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Xu Y, Niu Y, Li H, Pan G. Downregulation of lncRNA TUG1 attenuates inflammation and apoptosis of renal tubular epithelial cell induced by ischemia-reperfusion by sponging miR-449b-5p via targeting HMGB1 and MMP2. Inflammation 2021; 43:1362-1374. [PMID: 32206944 DOI: 10.1007/s10753-020-01214-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We aimed to evaluate the functions of long non-coding RNA taurine upregulated gene 1 (lncRNA TUG1) in renal ischemia-reperfusion (I/R) injury and identify the potential mechanisms. Pathological changes of renal tissues were examined using H&E staining after mimic renal I/R injury in vivo. The contents of serum renal functional parameters and inflammatory factors were measured. The expression of TUG1 and miR-449b-5p in renal tissues and HK-2 cells stimulated by I/R were detected. Then, the effects of TUG1 silencing on inflammation and apoptosis of cells were evaluated. Dual luciferase reporter assays were executed for determining the correlation between miR-449b-5p and TUG1, high mobility group box 1 (HMGB1), or matrix metalloproteinase 2 (MMP2). Subsequently, cells were co-transfected with miR-449b-5p mimic and pcDNA3.1 TUG1. The levels of inflammation, apoptosis, and the expression of HMGB1 and MMP2 were detected. The results revealed that renal tissues were obviously damaged after I/R accompanied by changes in renal functional markers and inflammatory factors. TUG1 was highly expressed whereas miR-449b-5p was lowly expressed. TUG1 silencing reduced the inflammation and apoptosis. Dual luciferase reporter assays confirmed that miR-449b-5p was a target of TUG1 as well as HMGB1 and MMP2 were direct targets of miR-449b-5p. Meanwhile, miR-449b-5p mimic presented the same results with TUG1 silencing, which were reversed after TUG1 overexpression. Moreover, MMP2 and HMGB1 expression was decreased after miR-449b-5p overexpression while that of was increased after TUG1 overexpression. These findings demonstrated that TUG1 silencing attenuates I/R-induced inflammation and apoptosis via targeting miR-449b-5p and regulating HMGB1 and MMP2 expression.
Collapse
Affiliation(s)
- Yuan Xu
- Department of organ transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, Guizhou Province, China
| | - Yulin Niu
- Department of organ transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, Guizhou Province, China
| | - Haiyang Li
- Department of hepatobiliary surgery, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, Guizhou Province, China.
| | - Guanghui Pan
- Department of organ transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, Guizhou Province, China.
| |
Collapse
|
20
|
Lithium alleviated spinal cord injury (SCI)-induced apoptosis and inflammation in rats via BDNF-AS/miR-9-5p axis. Cell Tissue Res 2021; 384:301-312. [PMID: 33464390 DOI: 10.1007/s00441-020-03298-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) is a major cause of paralysis, disability and even death in severe cases. Lithium has neuroprotective effects on SCI, while the underlying mechanisms remain obscure. In the present study, we established a SCI rat model, which subsequently received lithium treatment. Results displayed that lithium treatment improved the locomotor function recovery and reduced apoptosis by increasing anti-apoptotic molecule expression and decreasing pro-apoptotic factor expression in SCI rats. Furthermore, lithium treatment alleviated the inflammatory response by inactivating the nuclear factor-kappa B (NF-κB) pathway and inhibited the expression of lncRNA brain-derived neurotrophic factor antisense (BDNF-AS) in SCI rats. Subsequent researches indicated that miR-9-5p was targeted and regulated by BDNF-AS. Lithium treatment rescued the upregulation of BDNF-AS expression and downregulation of miR-9-5p expression induced by H2O2 in SH-SY5Y cells. BDNF-AS overexpression or miR-9-5p interference attenuated the anti-apoptotic and anti-inflammatory effects of lithium chloride in SH-SY5Y cells that was damaged by H2O2 induction, revealing that lithium might act through the BDNF-AS/miR-9-5p axis. In vivo studies showed that the injection of BDNF-AS adenovirus vector or miR-9-5p inhibitor reversed the effects of lithium on the histologic morphology of spinal cord, motor function, inflammatory reaction and apoptosis in SCI rats, which was consistent with the results of in vitro studies. In conclusion, our data demonstrated that lithium reduced SCI-induced apoptosis and inflammation in rats via the BDNF-AS/miR-9-5p axis.
Collapse
|
21
|
Silence of Long Noncoding RNA SNHG14 Alleviates Ischemia/Reperfusion-Induced Acute Kidney Injury by Regulating miR-124-3p/MMP2 Axis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8884438. [PMID: 33490282 PMCID: PMC7803415 DOI: 10.1155/2021/8884438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022]
Abstract
Purpose Ample evidence has proved that lncRNAs are pivotal regulators in acute kidney injury (AKI). Here, we focus on the role and mechanism of lncRNA SNHG14 in ischemia/reperfusion- (I/R-) caused AKI. Methods I/R and hypoxia/reoxygenation (H/R) were applied to induce rats and HK-2 cells to establish AKI models in vivo and in vitro. Relative expression of SNHG14, miR-124-3p, and MMP2 was determined by qRT-PCR. HE staining was used to evaluate pathological changes in renal tissues, and acute tubular necrosis (ATN) score was calculated. Renal function was evaluated by measuring serum creatinine content and blood urea nitrogen content. Levels of IL-1β, IL-6, and TNF-α were measured by ELISA. Cell viability was examined by MTT assay. Oxidative stress was assessed by measuring SOD, MDA, and ROS levels. The target of SNHG14 or miR-124-3p was verified by DLR assay. Protein expression of MMP2 was examined by western blot. Results SNHG14 was boosted in renal tissues of I/R-stimulated rats and H/R-induced HK-2 cells, while miR-124-3p was diminished in H/R-stimulated HK-2 cells. Si-SNHG14 or miR-124-3p mimics repressed inflammation and oxidative stress and enhanced cell viability in H/R-stimulated HK-2 cells. Sh-SNHG14 mitigated I/R-induced AKI in rats. MiR-124-3p was targeted by SNHG14, and MMP2 was targeted by miR-124-3p. Inhibition of miR-124-3p or upregulation of MMP2 reversed inhibitory effects of SNHG14 silence on inflammation and oxidative stress as well as the promoting effect of SNHG14 silence on cell viability in H/R-induced HK-2 cells. Conclusion Knockdown of SNHG14 alleviated I/R-induced AKI by miR-124-3p-mediated downregulation of MMP2.
Collapse
|
22
|
Liao C, Guo Y, Gong Y, Huang X, Liao X, Wang X, Ruan G, Gao F. Clinical implications and nomogram prediction of long noncoding RNA FRGCA as diagnostic and prognostic indicators in colon adenocarcinoma. Medicine (Baltimore) 2020; 99:e22806. [PMID: 33126318 PMCID: PMC7598802 DOI: 10.1097/md.0000000000022806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer, especially colon adenocarcinoma (COAD), is associated with significant morbidity and mortality worldwide. Long noncoding RNA (lncRNA) has been implicated in tumorigenesis. The aim of the present study was to elucidate the potential diagnostic and prognostic values of lncRNA FRGCA in COAD.The data of 438 COAD patients were retrieved for analysis. Diagnostic significance was evaluated using tumor and nontumor tissues. Prognostic significance was evaluated using a Cox proportional regression model. Stratified analysis was performed to identify associations between clinical factors and lncRNA FRGCA expression. A nomogram was constructed using the clinical factors and lncRNA FRGCA for survival prediction. Enrichment analysis identified gene ontologies and metabolic pathways of mRNAs with high Pearson correlation coefficients with lncRNA FRGCA.lncRNA FRGCA was highly expressed in tumor tissues of COAD and demonstrated diagnostic value (area under curve = 0.763, P < .0001). Prognostic significance analysis indicated that lncRNA FRGCA had prognostic value in COAD [adjusted P < .001, hazard ratio (HR) = 0.444, 95% confidence interval (95% CI) = 0.288-0.685] and high expression of lncRNA FRGCA indicated better survival in COAD. A nomogram was evaluated for prediction of survival at 1, 3, and 5 years. Enrichment analysis revealed many mRNAs involved in the structural constituents of the mitochondrial inner membrane and translational termination, protein binding, translation, ribosome, oxidative phosphorylation, and metabolic pathways, especially the nucleoplasm.Differentially expressed in tumor vs nontumor tissues, lncRNA FRGCA had both diagnostic and prognostic implications in COAD, which may be associated with ribosome metabolism, oxidative phosphorylation, and nucleoplasm-related metabolic pathways.
Collapse
Affiliation(s)
- Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Yun Guo
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Xue Huang
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guotian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| |
Collapse
|
23
|
Fang S, Liu Z, Guo Q, Chen C, Ke X, Xu G. High BANCR expression is associated with worse prognosis in human malignant carcinomas: an updated systematic review and meta-analysis. BMC Cancer 2020; 20:870. [PMID: 32907530 PMCID: PMC7488167 DOI: 10.1186/s12885-020-07177-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/13/2020] [Indexed: 01/11/2023] Open
Abstract
Background BRAF-activated noncoding RNA (BANCR) is aberrantly expressed in various tumor tissues and has been confirmed to function as a tumor suppressor or oncogene in many types of cancers. Considering the conflicting results and insufficient sampling, a meta-analysis was performed to explore the prognostic value of BANCR in various carcinomas. Methods A comprehensive literature search of PubMed, Web of Science, EMBASE, Cochrane Library and the China National Knowledge Infrastructure (CNKI) was conducted to collect relevant articles. Results The pooled results showed a strong relationship between high BANCR expression and poor overall survival (OS) (HR (hazard ratio) =1.60, 95% confidence interval (CI): 1.19–2.15, P = 0.002) and recurrence-free survival (RFS) (HR = 1.53, 95% CI: 1.27–1.85, P < 0.00001). In addition, high BANCR expression predicted advanced tumor stage (OR (odds ratio) =2.39, 95% CI: 1.26–4.53, P = 0.008), presence of lymph node metastasis (OR = 2.03, 95% CI: 1.08–3.83, P = 0.03), positive distant metastasis (OR = 3.08, 95% CI: 1.92–4.96, P < 0.00001) and larger tumor sizes (OR = 1.63, 95% CI: 1.09–2.46, P = 0.02). However, no associations were found for smoking status (OR = 1.01, 95% CI: 0.65–1.56, P = 0.98), age (OR = 0.88, 95% CI: 0.71–1.09, P = 0.236) and sex (OR = 0.91, 95% CI: 0.72–1.16, P = 0.469). The sensitivity analysis of OS showed that the results of each publication were almost consistent with the combined results, and the merged results have high robustness and reliability. Conclusions The results showed that elevated BANCR expression was associated with unfavorable prognosis for most cancer patients, and BANCR could serve as a promising therapeutic target and independent prognostic predictor in most of cancer types.
Collapse
Affiliation(s)
- Shixu Fang
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Zhou Liu
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Qiang Guo
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Cheng Chen
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Xixian Ke
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| | - Gang Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
24
|
Cheng Y, Hu Q, Zhou J. Silencing of lncRNA PVT1 ameliorates streptozotocin-induced pancreatic β cell injury and enhances insulin secretory capacity by regulating miR-181a-5p. Can J Physiol Pharmacol 2020; 99:303-312. [PMID: 32758099 DOI: 10.1139/cjpp-2020-0268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is a type of metabolic disorder characterized by long-term hyperglycemia. Accumulating evidence shows that long noncoding RNAs (lncRNAs) play significant roles in the occurrence and development of DM. This study intended to investigate the role of lncRNA plasmacytoma variant translocation 1 (PVT1) in rat insulinoma (INS-1) cells damaged by streptozotocin (STZ) and to identify the potential mechanisms. Firstly, PVT1 expression in INS-1 cells was assessed using RT-qPCR after STZ stimulation. After PVT1-knockdown, cell apoptosis, the contents of oxidative stress related markers, and changes in insulin secretion were detected. Results indicated that PVT1 was remarkably upregulated after STZ stimulation. PVT1-knockdown inhibited STZ-induced oxidative stress and apoptosis of INS-1 cells. Moreover, the insulin secretory capacity was notably elevated following PVT1 silencing. Subsequently, a luciferase reporter assay verified that miR-181a-5p was directly targeted by PVT1. The rescue assays revealed that miR-181a-5p inhibitor dramatically abrogated the effects of PVT1 silencing on oxidative stress, apoptosis, and insulin secretion. Taken together, these findings demonstrated that PVT1-knockdown could ameliorate STZ-induced oxidative stress and apoptosis and elevate insulin secretory capacity in pancreatic β cells by regulating miR-181a-5p, suggesting a promising biomarker in DM diagnosis and treatment.
Collapse
Affiliation(s)
- Yinqin Cheng
- Department of Endocrinology, The Second People's Hospital of Nantong City, Nantong City, Jiangsu Province, 226002, China
| | - Qiaosheng Hu
- Department of Endocrinology, Lianshui County People's Hospital, Huaian City, Jiangsu Province, 223400, China
| | - Jie Zhou
- Department of Endocrinology, Liyang People's Hospital, Changzhou City, Jiangsu Province, 213300, China
| |
Collapse
|
25
|
Luo L, Chen C, He H, Cai M, Ling C. Silencing of Long Non-Coding RNA (LncRNA) Non-Coding RNA Activated by DNA Damage (NORAD) Inhibits Proliferation, Invasion, Migration, and Promotes Apoptosis of Glioma Cells via Downregulating the Expression of AKR1B1. Med Sci Monit 2020; 26:e922659. [PMID: 32778640 PMCID: PMC7392058 DOI: 10.12659/msm.922659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background We aimed to investigate the functions of long non-coding RNA (lncRNA) non-coding RNA activated by DNA damage (NORAD) in glioma and identify the potential mechanisms. Material/Methods The expression of NORAD and AKR1B1 in human glioma cell lines were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Then, cell proliferation, invasion, and migration were tested by Cell Counting Kit-8 (CCK-8), colony formation assay, Transwell, and scratch wound healing assay after NORAD silencing. Meanwhile, western blotting was utilized to measure the expression of migration-related proteins. Apoptosis of glioma cells was detected using flow cytometry and apoptosis-related proteins expression was determined. Moreover, the correlation between NORAD and AKR1B1 was verified by RNA-binding protein immunoprecipitation (RIP assay). After co-transfection with AKR1B1 overexpressed plasmid and NORAD siRNA, cell proliferation, invasion, migration, and apoptosis were examined again. Furthermore, the expression of proteins in extracellular signal-regulated kinase (ERK) signaling was tested using western blotting. Results The results revealed that NORAD and AKR1B1 were highly expressed in glioma cells. NORAD silencing inhibited proliferation, invasion and migration but promoted apoptosis of glioma cells, accompanied by the expression changes of migration- and apoptosis-related proteins. However, after co-transfection with AKR1B1 pcDNA3.1 in NORAD silencing cells, the effects of NORAD silencing on proliferation, invasion, migration, and apoptosis were attenuated. Consistently, the expression of phosphorylated ERK (p-ERK) was decreased after NORAD silencing, which were reversed following AKR1B1 overexpression. Conclusions These findings demonstrated that NORAD silencing suppressed proliferation, invasion, and migration and boosted apoptosis of glioma cells via downregulating the AKR1B1 expression, which may provide a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Lun Luo
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Haiyong He
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Meiqin Cai
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
26
|
Yuan C, Ning Y, Pan Y. Emerging roles of HOTAIR in human cancer. J Cell Biochem 2020; 121:3235-3247. [PMID: 31943306 DOI: 10.1002/jcb.29591] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Chunjue Yuan
- Department of Laboratory MedicineZhongnan Hospital of Wuhan University, Wuhan University Wuhan Hubei China
- School of Laboratory MedicineHubei University of Chinese Medicine Wuhan China
| | - Yong Ning
- School of Laboratory MedicineHubei University of Chinese Medicine Wuhan China
| | - Yunbao Pan
- Department of Laboratory MedicineZhongnan Hospital of Wuhan University, Wuhan University Wuhan Hubei China
- Center for Gene DiagnosisZhongnan Hospital of Wuhan University, Wuhan University Wuhan Hubei China
| |
Collapse
|
27
|
Li D, Yu Z, Wang T, Li Y, Chen X, Wu L. The role of the novel LincRNA uc002jit.1 in NF-kB-mediated DNA damage repair in acute myeloid leukemia cells. Exp Cell Res 2020; 391:111985. [PMID: 32259522 DOI: 10.1016/j.yexcr.2020.111985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 01/07/2023]
Abstract
The roles and therapeutic potential of long noncoding RNAs (lncRNAs) in acute myeloid leukemia (AML) have attracted increased attention. However, many lncRNAs have not been annotated in AML, and their predictive value for AML therapy remains unclear. In this study, we identified a novel large intergenic noncoding RNA uc002jit.1 (D43770) from a lncRNA microarray. We first proved uc002jit.1 is a target gene of nuclear factor kappa B/RELA, RELA regulated uc002jit.1 transcription by binding to its promoter. Additionally, uc002jit.1 knockdown impaired the stability of poly (ADP-ribose) polymerase 1 (PARP1) mRNA, and then reduced PARP1 protein content and PARylation level upon DNA damage, thus inhibiting DNA damage repair in AML cells. Moreover, uc002jit.1 knockdown significantly inhibited AML cells proliferation and increased the sensitivity to chemotherapeutic drugs in vitro as well as in a mouse model in vivo. Overall, our study indicated that uc002jit.1 may be associated with the occurrence and prognosis of AML and could be a new diagnostic/prognostic biomarker and therapeutic target for AML.
Collapse
Affiliation(s)
- Ding Li
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, PR China; Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Zelei Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Tingting Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China
| | - Yi Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xianling Chen
- Fujian Institute of Hematology, Union Hospital, Fuzhou, 350001, PR China
| | - Lixian Wu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350108, PR China; Institute of Materia Medicine, Fuzhou, 350108, PR China; Fuijan Key Laboratory of Natural Medicine Pharmacology, Fuzhou, 350108, PR China.
| |
Collapse
|
28
|
Rajagopal T, Talluri S, Akshaya R, Dunna NR. HOTAIR LncRNA: A novel oncogenic propellant in human cancer. Clin Chim Acta 2020; 503:1-18. [DOI: 10.1016/j.cca.2019.12.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
|
29
|
Wang Y, Xiao H, Zhao F, Li H, Gao R, Yan B, Ren J, Yang J. Decrypting the crosstalk of noncoding RNAs in the progression of IPF. Mol Biol Rep 2020; 47:3169-3179. [PMID: 32180083 DOI: 10.1007/s11033-020-05368-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an agnogenic, rare, and lethal disease, with high mortality and poor prognosis and a median survival time as short as 3 to 5 years after diagnosis. No effective therapeutic drugs are still not available not only in clinical practice, but also in preclinical phases. To better and deeper understand pulmonary fibrosis will provide more effective strategies for therapy. Mounting evidence suggests that noncoding RNAs (ncRNAs) and their interactions may contribute to lung fibrosis; however, the mechanisms underlying their roles are largely unknown. In this review, we systematically summarized the recent advances regarding the crucial roles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) and crosstalk among them in the development of IPF. The perspective for related genes was well highlighted. In summary, ncRNA and their interactions play a key regulatory part in the progression of IPF and are bound to provide us with new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Xiao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Fenglian Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Jin Ren
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
30
|
Dai X, Yi M, Wang D, Chen Y, Xu X. Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model. Biol Chem 2020; 400:753-763. [PMID: 30653462 DOI: 10.1515/hsz-2018-0340] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/03/2019] [Indexed: 11/15/2022]
Abstract
The present study was designed to investigate the mechanism of the traditional Chinese medicine Changqin NO. 1 on the amelioration of traumatic brain injury (TBI). Adult male C57BL/6J mice and newborn mice were used to generate a mouse TBI model and harvest primary neurons, respectively. The localizations of specific neural markers neuropilin-1 (Nrp-1), growth-associated protein-43 (GAP-43) and microtubule-associated protein Tau (Tau) were examined in brain tissues by immunohistochemistry. Terminal deoxynucleotidyl transferase dUTP nick end labeling apoptotic cell detection in tissue sections and the CCK-8 cell viability assay were performed to examine neuronal apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were also carried out in this study. The association between long non-coding RNA (lncRNA) growth-arrest specific 5 (GAS5), miR-335 and RAS p21 GTPase activating protein 1 (Rasa1) was disclosed using the dual-luciferase reporter assay. Changqin NO. 1 inhibited TBI-induced neuronal apoptosis in vivo and in vitro. GAS5 functioned as a competing endogenous RNA (ceRNA) by sponging miR-335 to upregulate Rasa1 expression in mouse neuronal cells. Further investigations demonstrated that GAS5 promoted neuronal apoptosis following TBI via the miR-335/Rasa1 axis. In vivo experiments indicated that Changqin NO. 1 exerted neuroprotection during TBI via the GAS5/miR-335/Rasa1 axis. Changqin NO. 1 promoted neuroprotective effects by inhibiting neuronal apoptosis via the GAS5/miR-335/Rasa1 axis in TBI.
Collapse
Affiliation(s)
- Xingping Dai
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Yanyi Chen
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Xia Xu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| |
Collapse
|
31
|
Zhang Y, He XY, Qin S, Mo HQ, Li X, Wu F, Zhang J, Li X, Mao L, Peng YQ, Guo YN, Lin Y, Tian FJ. Upregulation of PUM1 Expression in Preeclampsia Impairs Trophoblast Invasion by Negatively Regulating the Expression of the lncRNA HOTAIR. Mol Ther 2019; 28:631-641. [PMID: 31862314 DOI: 10.1016/j.ymthe.2019.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
Pumilio (PUM) proteins are members of a highly conserved RNA-binding protein family that posttranscriptionally regulate gene expression in many organisms. However, their roles in the placenta are unclear. In the present study, we report the requirement for the PUM homolog 1 (PUM1) gene in preeclampsia (PE). Immunofluorescence and immunohistochemical data showed that PUM1 was highly expressed in human placental villi from women with PE compared to healthy controls (HCs). Further, PUM1 overexpression repressed, and knockdown enhanced, the invasion and proliferation of trophoblasts. Interestingly, PUM1 knockdown promoted trophoblast invasion in a villous explant culture model, while PUM1 overexpression repressed these effects. Furthermore, lncRNA transcriptome sequencing coupled with RNA immunoprecipitation (RIP) revealed that PUM1 inhibits trophoblast invasion in PE by downregulating the expression of lncRNA HOTAIR. Moreover, PUM1 regulates HOTAIR expression via a posttranscriptional mechanism. Using RNA-protein pull-down and mRNA stability assays, we identified PUM1 as a specific binding partner that decreased the half-life of HOTAIR and lowered the steady-state level of HOTAIR expression, suggesting a novel posttranscriptional regulatory mechanism. Collectively, these findings identified a novel RNA regulatory mechanism, revealing a new pathway governing the regulation of PUM1/HOTAIR in trophoblast invasion in the pathogenesis of PE.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ying He
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Shi Qin
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Hui-Qin Mo
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xiao Li
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Fan Wu
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Jing Zhang
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xing Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Mao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ya-Qing Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu-Na Guo
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yi Lin
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Fu-Ju Tian
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| |
Collapse
|
32
|
Zou G, Zhong W, Wu F, Wang X, Liu L. Inhibition of lncRNA Neat1 by catalpol via suppressing transcriptional activity of NF-κB attenuates cardiomyocyte apoptosis. Cell Cycle 2019; 18:3432-3441. [PMID: 31736383 DOI: 10.1080/15384101.2019.1673619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is considered as a major pathogenesis in myocardial damage; however, effective therapies are limited so far. The present study aimed to investigate the in vitro antioxidative mechanism of Catalpol in cardiomyocytes. The results indicated that Catalpol attenuated high glucose (HG)-induced apoptosis in mouse cardiomyocytes via significantly downregulating long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (Neat1) expression. Furthermore, Catalpol downregulated Neat1 expression and attenuated apoptosis by inhibiting production of intracellular reactive oxygen species (ROS) in HG-treated cardiomyocytes. Moreover, Catalpol also suppressed HG-induced degradation of IκBα and the nuclear localization of nulear factor-κB (NF-κB) by decreasing the intracellular ROS levels. Additionally, chromatin immunoprecipitation (ChIP) and dual-luciferase activity assays validated that NF-κB bound to Neat1 promoter to activate Neat1 expression. In summary, these results implied that Catalpol protected mouse cardiomyocytes against oxidative injury at least partly through ROS-NF-κB-Neat1 axis.
Collapse
Affiliation(s)
- Guoliang Zou
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Weili Zhong
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Fan Wu
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaoxue Wang
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Li Liu
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
33
|
Yang H, Wang F, Li F, Ren C, Pang J, Wan Y, Wang Z, Feng X, Zhang Y. Comprehensive analysis of long noncoding RNA and mRNA expression patterns in sheep testicular maturation. Biol Reprod 2019; 99:650-661. [PMID: 29668837 DOI: 10.1093/biolre/ioy088] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/12/2018] [Indexed: 02/03/2023] Open
Abstract
Long noncoding RNAs (LncRNAs) have been identified as important regulators of testis development; however, their expression patterns and roles in sheep are not yet clear. Thus, we used stranded specific RNA-seq to profile the testis transcriptome (lncRNAs and mRNAs) in premature and mature sheep. Hormone levels and the testis index were examined, and histological analyses were performed at five stages of testis development, 5-day-old (D5), 3-month-old (3M), 6-month-old (6M), 9-month-old (9M), and 2-year-old (2Y), the results of which indicate a significant difference in hormone levels and testis morphometries between the 3M and 9M stages (P < 0.05). Based on the comparison between 3M and 9M samples, we found 1,118 differentially expressed (DE) lncRNAs and 7,253 DE mRNAs in the testes, and qRT-PCR analysis showed that the results correlated well with the transcriptome data. Furthermore, we constructed lncRNA-protein-coding gene interaction networks. Forty-seven DE lncRNA-targeted genes enriched for male reproduction were obtained by cis- and trans-acting; 51 DE lncRNAs and 45 cis-targets, 2 DE lncRNAs and 2 trans-targets were involved in this network. Of these, 5 lncRNAs and their targets, PRKCD, NANOS3, SERPINA5, and CYP19A1, were enriched for spermatogenesis and male gonad development signaling pathways. We further examined the expression levels of 5 candidate lncRNAs and their target genes during testis development. Lastly, the interaction of lncRNA TCONS__00863147 and its target gene PRKCD was validated in vitro in sheep Leydig cells. This study provides a valuable resource for further study of lncRNA function in sheep testis development and spermatogenesis.
Collapse
Affiliation(s)
- Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Fengzhe Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Caifang Ren
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Ziyu Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Xu Feng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| |
Collapse
|
34
|
Li N, Liu Y, Cai J. LncRNA MIR155HG regulates M1/M2 macrophage polarization in chronic obstructive pulmonary disease. Biomed Pharmacother 2019; 117:109015. [DOI: 10.1016/j.biopha.2019.109015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
|
35
|
Xue S, Wang S, Li J, Guan H, Jiang S, Guo Y, Li Q. LncRNA NBAT1 suppresses cell proliferation and migration via miR-346/GSK-3β axis in renal carcinoma. IUBMB Life 2019; 71:1720-1728. [PMID: 31298469 DOI: 10.1002/iub.2111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023]
Abstract
Long non-coding RNA (LncRNA) neuroblastoma associated transcript 1 (NBAT1) was demonstrated to be significantly downregulated in renal carcinoma (RCC) cells. However, the function and mechanism of NBAT1 in RCC is poorly understood. The expression of NBAT1 and glycogen synthase kinase-3β (GSK-3β)-mediated Wnt/β-catenin-related proteins were measured by quantitative real-time PCR (qRT-PCR) and western blotting in RCC cell lines. Cell viability, migration, and invasion were estimated by CCK-8 and Transwell assay. The association of miR-346 with GSK-3β expression was verified using luciferase assay. NBAT1 was significantly downregulated in RCC cells, and inhibited RCC cell proliferation, migration, and invasion. Furthermore, NBAT1 negatively regulated miR-346 expression. In addition, miR-346 overexpression and the knockdown of GSK-3β, a direct target of miR-346 could overturn the inhibitory effect of NBAT1 on Wnt/β-catenin signaling and cell proliferation, migration, and invasion. NBAT1 functioned as an endogenous sponge by competing for miR-346 binding to GSK-3β and therefore alleviated RCC cells.
Collapse
Affiliation(s)
- Sheng Xue
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Sheng Wang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jian Li
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Han Guan
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Shengqun Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Guo
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qingwen Li
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
36
|
Zhang Z, Qiao J, Zhang D, Zhu W, Zhu J, Leng X, Li S. Noncoding RNAs Act as Tumor-Derived Molecular Components in Inducing Premetastatic Niche Formation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9258075. [PMID: 31309120 PMCID: PMC6594336 DOI: 10.1155/2019/9258075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/04/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
Cancer metastasis has been demonstrated as it is the culmination of a cascade of priming steps. Increasing evidence has shown that tumor-derived molecular components (TDMCs) are known as extra cellular vesicle and nonvesicle factors and serve as versatile intercellular communication vehicles which can mediate signaling in the tumor microenvironment while creating the premetastatic niche. Noncoding RNAs (ncRNAs) as one of the TDMCs have been proved in participating in the formation of the premetastatic niche. Understanding the premetastatic niche formation mechanisms through TDMCs, especially ncRNAs may open a new avenue for cancer metastasis therapeutic strategies. In this review, recent findings regarding ncRNAs function were summarized, and then the interaction with the premetastatic niche formation was studied, which highlight the potential of using ncRNAs for cancer diagnosis and therapeutic effect.
Collapse
Affiliation(s)
- Zhedong Zhang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Jiao Qiao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, 250021, China
| | - Dafang Zhang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Weihua Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Xisheng Leng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Shu Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
37
|
Li Z, Qian J, Li J, Zhu C. Knockdown of lncRNA-HOTAIR downregulates the drug-resistance of breast cancer cells to doxorubicin via the PI3K/AKT/mTOR signaling pathway. Exp Ther Med 2019; 18:435-442. [PMID: 31281438 PMCID: PMC6580102 DOI: 10.3892/etm.2019.7629] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/05/2019] [Indexed: 01/06/2023] Open
Abstract
The resistance to chemotherapeutic drugs is a critical feature of breast cancer recurrence and metastasis. Long non-coding RNAs (LncRNAs) serve key roles in tumor drug resistance. LncRNA-HOX transcript antisense RNA (HOTAIR) has been reported to be overexpressed in certain types of cancer and may be closely associated with tumor resistance. The current study aimed to investigate the role of lncRNA-HOTAIR in the regulation of breast cancer resistance to doxorubicin (DOX). A breast cancer cell line (MCF-7) and DOX-resistant breast cancer cell line (DOXR-MCF-7) were utilized in the current study. DOXR-MCF-7 cells were transfected with lncRNA-HOTAIR small interfering RNA (siRNA) and control siRNA. Subsequently, MTT and colony formation assays were performed to assess cell proliferation. Cell apoptosis was also evaluated via flow cytometry. In addition, western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression of caspase-3, B-cell lymphoma 2, Bcl-2-associated X protein, phosphoinositide 3-kinase (PI3K), protein kinase B (AKT) and mechanistic target of rapamycin (mTOR), and the phosphorylation of PI3K, AKT, and mTOR. The data indicated that lncRNA-HOTAIR silencing decreased cell proliferation and increased apoptosis in MCF-7 and DOXR MCF-7 cells. Furthermore, lncRNA-HOTAIR silencing significantly decreased the phosphorylation of PI3K, AKT and mTOR, indicating that the knockdown of lncRNA-HOTAIR effectively attenuates the resistance of breast cancer cells to DOX by inhibiting the PI3K/AKT/mTOR pathway. In summary, the present study indicated that the knockdown of lncRNA-HOTAIR weakened the resistance of breast cancer cells to DOX via PI3K/AKT/mTOR signaling, suggesting that lncRNA-HOTAIR may be a novel intervention target to reverse DOX-resistance in breast cancer.
Collapse
Affiliation(s)
- Zhixiang Li
- Department of Tumor Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Jun Qian
- Department of Tumor Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Jing Li
- Department of Tumor Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Chao Zhu
- Department of Tumor Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| |
Collapse
|
38
|
Zheng D, Wang B, Zhu X, Hu J, Sun J, Xuan J, Ge Z. LncRNA OIP5-AS1 inhibits osteoblast differentiation of valve interstitial cells via miR-137/TWIST11 axis. Biochem Biophys Res Commun 2019; 511:826-832. [PMID: 30846207 DOI: 10.1016/j.bbrc.2019.02.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022]
Abstract
OIP5-AS1, a highly abundant imprinted long non-coding RNA (lncRNA), has been implicated in calcific aortic valve disease (CAVD). However, the function and underlying mechanism of OIP5-AS1 in CAVD progression remains unknown. In this study, osteoblastic differentiation of valve interstitial cells (VICs) isolated from human calcific aortic valves was induced by osteogenic medium. The protein levels of osteogenic markers were determined by immunofluorescence and western blotting. OIP5-AS1, miR-137 and TWIST-related protein 1 (TWIST1) expressions were detected by quantitative real-time PCR (qRT-PCR). ALP activity was evaluated by spectrophotometry. Mineralized bone matrix formation was assessed by Alizarin Red S staining. The interaction between OIP5-AS1 and miR-137 was studied using luciferase reporter assay, RNA pull-down assay and RNA-binding protein immunoprecipitation (RIP) assay. Luciferase reporter assay was also used to identify the possible interaction between miR-137 and TWIST11. The results showed that downregulated expression of OIP5-AS1 was observed in human aortic VICs after osteogenic induction. In vitro experiments revealed that OIP5-AS1 acted as a negative regulator of osteogenic differentiation. Mechanistically, we further showed that OIP5-AS1 could relieve osteogenic differentiation of VICs via upregulating miR-137 target gene TWIST1. Our study provides novel mechanistic insights into the cross-talk between OIP5-AS1, miR-137, and TWIST11, shedding light on the therapy for CAVD.
Collapse
Affiliation(s)
- Daokuo Zheng
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 461464, China
| | - Baocai Wang
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 461464, China; Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 461464, China
| | - Xiliang Zhu
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 461464, China; Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 461464, China
| | - Junlong Hu
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 461464, China; Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 461464, China
| | - Junjie Sun
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 461464, China; Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 461464, China
| | - Jizhong Xuan
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 461464, China; Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 461464, China
| | - Zhenwei Ge
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 461464, China; Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 461464, China.
| |
Collapse
|
39
|
Han Y, Chen D, Li H, Wang X, Zhang M, Yang Y. [Long chain non-coding RNA MALAT-1 gene knockdown inhibits growth and migration and promotes apoptosis of human laryngeal squamous cell carcinoma Hep-2 cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:923-930. [PMID: 30187883 DOI: 10.3969/j.issn.1673-4254.2018.08.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate the effect of knocking down long chain non-coding RNA MALAT-1 gene on the biologicalbehaviors of human laryngeal squamous cell carcinoma Hep-2 cells. METHODS With immortalized nasopharyngeal epithelial(NPE) cell line NP-69 as the reference, MALAT1 expression in FaDu, Hep-2 and nasopharyngeal carcinoma CNE-2Z cells weredetected using real-time PCR. Hep-2 cells were transfected with shmalat1 lentivirus and the expression of MALAT1 wasdetected. MTT assay, flow cytometry, Transwell assay and M Atrigel invasiveness test were used to evaluate the effect ofMALAT-1 knockdown on the proliferation, cell cycle, cell apoptosis, migration, and invasiveness of Hep-2 cells. RESULTS Compared with NP-69 cells, Hep-2 cells, FaDu cells, and CNE-2Z cells all showed significantly increased MALAT-1expression. In Hep-2 cells, knockdown of MALAT-1 significantly inhibited the cell proliferation, increased the cell percentagein S phase (P < 0.01), decreased the cell percentage in G2/M phase (P < 0.01), and attenuated the migration and invasiveness of thecells. CONCLUSIONS MALAT-1 is over-expressed in laryngeal squamous cell carcinoma, and knocking down MALAT-1 gene cansignificantly suppress the proliferation, invasion and migration and promotes apoptosis of the cancer cells.
Collapse
Affiliation(s)
- Yuefeng Han
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Deshang Chen
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Hui Li
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Xiaomin Wang
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Mingjie Zhang
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Yang Yang
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
40
|
Feng LL, Shen FR, Zhou JH, Chen YG. Expression of the lncRNA ZFAS1 in cervical cancer and its correlation with prognosis and chemosensitivity. Gene 2019; 696:105-112. [PMID: 30738960 DOI: 10.1016/j.gene.2019.01.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the expression of the lncRNA ZFAS1 in cervical cancer and its relationship with patient prognosis and cervical cancer cell chemosensitivity. METHODS The expression of ZFAS1 in cervical cancer tissues and cell lines was detected by qRT-PCR. The cervical cancer CaSki and the HeLa cell lines were transfected to be divided into Blank, siR-Control, and siR-ZFAS1 groups. MTT, wound-healing, and transwell assays were used to evaluate cell biological function. Cisplatin with different concentrations was used to treat cells in different transfection groups, and MTT assays were used to detect the cell growth inhibition rate and the half-inhibitory concentration (IC50) of cisplatin was measured. Cell apoptosis was determined by flow cytometry. A xenograft mouse model was used to investigate the effects of siR-ZFAS1 on the chemosensitivity to cisplatin. RESULTS ZFAS1 was significantly upregulated in cervical cancer tissues and cell lines, and increased ZFAS1 levels led to poor prognoses in patients. In addition, cells in the siR-ZFAS1 group showed remarkably reduced ZFAS1 expression as well as cell proliferation, invasion and migration. After being treated with cisplatin at different concentrations, cells in the siR-ZFAS1 group had dramatically increased cell growth inhibition and apoptosis but lower cisplatin IC50s. In addition, siR-ZFAS1 reduced the volumes and weights of tumors in nude mice treated with cisplatin and enhanced the chemosensitivity of cervical cancer cells to cisplatin. CONCLUSION The lncRNA ZFAS1 was upregulated in cervical cancer tissues, and its high expression indicated a poor prognosis. Silencing ZFAS1 may inhibit cell proliferation, migration and invasion and enhance cisplatin chemosensitivity.
Collapse
Affiliation(s)
- Lan-Lan Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China
| | - Fang-Rong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China
| | - Jin-Hua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China
| | - You-Guo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu, China.
| |
Collapse
|
41
|
Liu H, Yu K, Ma P, Xiong L, Wang M, Wang W. Long noncoding RNA myocardial infarction-associated transcript regulated the pancreatic stellate cell activation to promote the fibrosis process of chronic pancreatitis. J Cell Biochem 2018; 120:9547-9555. [PMID: 30582203 DOI: 10.1002/jcb.28231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play crucial roles in fibrosis process. In our previous RNA-seq study, we found that lncRNA myocardial infarction-associated transcript (MIAT) was differentially expressed in pancreatic tissues of chronic pancreatitis (CP) patients. However, the function of MIAT in CP remains unknown. This study was aimed to investigate the function and underlying mechanism of MIAT in pancreatic fibrosis. MATERIALS AND METHODS The expression levels of MIAT, miR-216a-3p, cyclooxygenase 2 (COX-2), α-smooth muscle actin (α-SMA), and collagen I were estimated by Western blot analysis and qualitative reverse transcription polymerase chain reaction. The relationships between miR-216a-3p, MIAT, and COX-2 were confirmed by luciferase reporter assay. The proliferation of human pancreatic stellate cells (HPaSteCs) was detected by cell counting kit-8 assay. RESULTS We found that MIAT, along with the levels of fibrosis-related proteins α-SMA and collagen I, as well as COX-2 were upregulated, while miR-216a-3p was downregulated in transforming growth factor (TGF)-β1-stimulated HPaSteCs. Mechanistically, MIAT acted as a molecular sponge for miR-216a-3p. Furthermore, we identified COX-2 as a direct target of miR-126a-3p. Additionally, MIAT overturned the inhibitory effect of miR-216a-3p overexpression and COX-2 knockdown on the activation and proliferation of HPaSteCs. CONCLUSION Our study provided mechanistic insights into a critical role for MIAT as a miRNA sponge in CP.
Collapse
Affiliation(s)
- Hao Liu
- Department of Hepatobiliary Surgery in East Hospital, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kaihuan Yu
- Department of Hepatobiliary Surgery in East Hospital, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Peng Ma
- Department of Hepatobiliary Surgery in East Hospital, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liangkun Xiong
- Department of Hepatobiliary Surgery in East Hospital, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Maoming Wang
- Department of Hepatobiliary Surgery in East Hospital, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weixing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
42
|
Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem J 2018; 475:3629-3638. [PMID: 30341166 DOI: 10.1042/bcj20180675] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
The present study was designed to explore whether exosomal lncRNA-KLF3-AS1 derived from human mesenchymal stem cells (hMSCs) can serve as a positive treatment for osteoarthritis (OA). hMSCs and MSC-derived exosomes (MSC-exo) were prepared for morphological observation and identification by transmission electron microscopy and flow cytometry. IL-1β-induced OA chondrocytes and collagenase-induced rat model of OA were established for the further experiments. Lentivirus-mediated siRNA targeting KLF3-AS1 was transfected into MSCs for silencing KLF3-AS1. The real-time quantitative PCR and western blotting analysis were performed to examine the mRNA and protein levels of type II collagen alpha 1 (Col2a1), aggrecan, matrix metalloproteinase 13 and runt-related transcription factor 2. Cell proliferation, apoptosis and migration were evaluated by CCK-8 assay, flow cytometry and transwell assay. HE (hematoxylin and eosin) staining and immunohistochemistry were used for histopathological studies. MSC-exo ameliorated IL-1β-induced cartilage injury. Furthermore, lncRNA KLF3-AS1 was markedly enriched in MSC-exo, and exosomal KLF3-AS1 suppressed IL-1β-induced apoptosis of chondrocytes. Further in vivo investigation indicated that exosomal KLF3-AS1 promoted cartilage repair in a rat model of OA. Exosomal KLF3-AS1 promoted cartilage repair and chondrocyte proliferation in a rat model of OA, which might be an underlying therapeutic target for OA.
Collapse
|
43
|
Jin H, Jin X, Chai W, Yin Z, Li Y, Dong F, Wang W. Long non-coding RNA MIAT competitively binds miR-150-5p to regulate ZEB1 expression in osteosarcoma. Oncol Lett 2018; 17:1229-1236. [PMID: 30655889 DOI: 10.3892/ol.2018.9671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 06/19/2018] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (LncRNAs), are significant in a number of biological stages and illnesses. The myocardial infarction associated transcript (MIAT) serves a function in numerous types of illness and physiological and pathological processes, including paranoid schizophrenia, diabetic retinopathy, myocardial infarction and neuroendocrine prostate cancer. However, the function of the lncRNA MIAT in the development of osteosarcoma is unknown. It has been identified that during the development of osteosarcoma, MIAT is upregulated in tumor tissues compared to adjacent non-tumor tissues. The spreading and proliferation of osteosarcoma cells was reduced by MIAT knockdown. These findings indicate that MIAT functions by competing with critical RNAs to target miR-150-5p and activate zinc finger E-box binding homeobox 1 to modulate the function of osteosarcoma cells. Together, the present findings may contribute to the understanding of the pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
- Hao Jin
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Xin Jin
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Weiguang Chai
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Zhiqiang Yin
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Yang Li
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Feng Dong
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| | - Wenbo Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150006, P.R. China
| |
Collapse
|
44
|
Yu Y, Chen Y, Zhang X, Lu X, Hong J, Guo X, Zhou D. Knockdown of lncRNA KCNQ1OT1 suppresses the adipogenic and osteogenic differentiation of tendon stem cell via downregulating miR-138 target genes PPARγ and RUNX2. Cell Cycle 2018; 17:2374-2385. [PMID: 30321077 DOI: 10.1080/15384101.2018.1534510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The study aimed to investigate the mechanism and biological roles of long noncoding RNA KCNQ1OT1 in adipogenic and osteogenic differentiation of tendon stem cell. In this study, tendon injury mice model was established to detect the expression of lncRNA KCNQ1OT1, miR-138, peroxisome proliferator-activated receptor gamma (PPARγ) and runt-related gene 2 (RUNX2) using quantitative real-time PCR (qRT-PCR) and western blot. Mechanical testing was carried out to assess tendon function. Adiponectin and Osterix were used to evaluate the adipogenic and osteogenic differentiation of tendon stem cells (TSCs). The interaction between lncRNA KCNQ1OT1 and miR-138 was detected by RNA immunoprecipitation (RIP) assay and RNA pull-down assay. We found that lncRNA KCNQ1OT1, PPARγ and RUNX2 expression were significantly upregulated, while miR-138 was suppressed in tendon tissue of injured group and the separated TSCs. lncRNA KCNQ1OT1 knockdown inhibited the adipogenic and osteogenic differentiation of TSCs. Further studies indicated that lncRNA KCNQ1OT1 functioned as a competing endogenous RNA (ceRNA) by sponging miR-138 in TSCs. Further investigations confirmed that lncRNA KCNQ1OT1 knockdown exerted anti-adipogenic and anti-osteogenic function via miR-138/PPARγ and miR-138/RUNX2 axis. Therefore, the lncRNA KCNQ1OT1/miR-138/PPARγ or RUNX2 axis modulated adipogenic and osteogenic differentiation of tendon stem cell, which might be a promising therapeutic target for tendon injuries.
Collapse
Affiliation(s)
- Yang Yu
- a Department of Orthopaedics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China.,b Department of Traumatic Orthopaedics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , China.,c Zhejiang Provincial Key Laboratory of Orthopaedics , Wenzhou , China
| | - Ying Chen
- d Department of Emergency , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xiaolei Zhang
- a Department of Orthopaedics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China.,c Zhejiang Provincial Key Laboratory of Orthopaedics , Wenzhou , China
| | - Xiaolang Lu
- a Department of Orthopaedics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China.,c Zhejiang Provincial Key Laboratory of Orthopaedics , Wenzhou , China
| | - Jianjun Hong
- a Department of Orthopaedics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China.,c Zhejiang Provincial Key Laboratory of Orthopaedics , Wenzhou , China
| | - Xiaoshan Guo
- a Department of Orthopaedics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China.,c Zhejiang Provincial Key Laboratory of Orthopaedics , Wenzhou , China
| | - Dongsheng Zhou
- b Department of Traumatic Orthopaedics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong , China
| |
Collapse
|
45
|
Hu J, Wu H, Wang D, Yang Z, Dong J. LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis. Biochimie 2018; 157:102-110. [PMID: 30347231 DOI: 10.1016/j.biochi.2018.10.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
This study is designed to explore the mechanism by which long non-coding RNA (lncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) plays a pathogenic role in uric acid nephropathy (UAN). The expressions of ANRIL, miR-122-5p, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) and NOD-like receptor protein 3 (NLRP3) were determined in UAN patients and uric acid-treated HK-2 cells by qRT-PCR. Protein levels of BRCC3 and NLRP3 were examined by western blot. The levels of inflammatory cytokines were quantified by ELISA. CCK-8 assay was used to assess cell viability. Apoptosis was detected by Annexin V-FITC/PI double-labeled flow cytometry and TUNEL assay. The interaction between ANRIL, miR-122-5p and BRCC3 were studied using luciferase reporter assay. The role of ANRIL in renal injury was evaluated in experimental rats. ANRIL and BRCC3 were highly expressed while miR-122-5p was down-regulated in serum of UAN patients and uric acid-treated tubular epithelial cells. Luciferase reporter assay and in vitro rescue experiment confirmed that ANRIL promoted NLRP3 inflammasome activation by up-regulating BRCC3 expression via sponging miR-122-5p. Furthermore, in vivo experiment validated that knockdown of ANRIL alleviated renal injury of UAN rats. ANRIL exerted pathogenic effect in UAN to promote NLRP3 inflammasome activation via miR-122-5p/BRCC3 axis.
Collapse
Affiliation(s)
- Jiacai Hu
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Hao Wu
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daochun Wang
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhijie Yang
- Department of Acupuncture and Moxibustion, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junjun Dong
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Zhang H, Li D, Zhang Y, Li J, Ma S, Zhang J, Xiong Y, Wang W, Li N, Xia L. Knockdown of lncRNA BDNF-AS suppresses neuronal cell apoptosis via downregulating miR-130b-5p target gene PRDM5 in acute spinal cord injury. RNA Biol 2018; 15:1071-1080. [PMID: 29995562 DOI: 10.1080/15476286.2018.1493333] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The present study was designed to investigate the molecular mechanism and biological roles of lncRNA brain-derived neurotrophic factor antisense (lncRNA BDNF-AS) in acute spinal cord injury (ASCI). METHODS The rat model of ASCI and hypoxic cellular model were established to detect the expression of BDNF-AS, miR-130b-5p, PR (PRDI-BF1 and RIZ) domain protein 5 (PRDM5) and cleaved caspase 3 (c-caspase 3) using qRT-PCR and western blot. Basso, Beattie and Bresnahan (BBB) score was carried out to assess neurological function. Flow cytometry was used to determine the apoptosis of neuronal cells. The association among BDNF-AS, miR-130b-5p and PRDM5 were disclosed by RNA immunoprecipitation (RIP) assay, RNA pull-down assay and dual-luciferase reporter assay. RESULTS BDNF-AS, PRDM5 and c-caspase 3 expression were significantly upregulated, while miR-130b-5p was suppressed in the ASCI group and neuronal cells following hypoxia treatment. BDNF-AS knockdown inhibited neuronal cell apoptosis. Further studies indicated that BDNF-AS functioned as a competing endogenous RNA (ceRNA) by sponging miR-130b-5p in neuronal cells. Further investigations demonstrated that PRDM5 was a target of miR-130b-5p and BDNF-AS knockdown exerted anti-apoptotic effects via miR-130b-5p/PRDM5 axis. CONCLUSION The lncRNA BDNF-AS/miR-130b-5p/PRDM5 axis might be a promising therapeutic target for ASCI.
Collapse
Affiliation(s)
- Huafeng Zhang
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Dongzhe Li
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Yi Zhang
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Jianqiang Li
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Shengli Ma
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Jianwei Zhang
- b Department of Urology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Yuanyuan Xiong
- c Department of Hematology , The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital , Zhengzhou , Henan Province , China
| | - Wengang Wang
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Ning Li
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| | - Lei Xia
- a Department of Orthopedics , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan Province , China
| |
Collapse
|
47
|
Chen ZP, Wei JC, Wang Q, Yang P, Li WL, He F, Chen HC, Hu H, Zhong JB, Cao J. Long non‑coding RNA 00152 functions as a competing endogenous RNA to regulate NRP1 expression by sponging with miRNA‑206 in colorectal cancer. Int J Oncol 2018; 53:1227-1236. [PMID: 29956750 DOI: 10.3892/ijo.2018.4451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/21/2018] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer; however, the molecular mechanisms underlying colorectal tumor metastasis and growth remain elusive. Recently, accumulating evidence has indicated that long non‑coding RNAs (lncRNAs) play a critical role in CRC progression and metastasis; however, the biological role and clinical significance of lncRNA 00152 (lnc00152) in CRC remains largely unknown. Thus, in this study, lnc00152 expression was measured in 80 human CRC tissue samples, 40 non‑cancerous tissue samples, and 3 CRC cell lines (SW480, SW620 and LoVo) using RT‑qPCR. We examined the effects of lnc00152 on CRC cells following transfection with lnc00152 overexpression plasmid or respective siRNA in vitro and in vivo. Luciferase assays revealed the mechanism driving competitive endogenous RNA (ceRNA). We identified that lnc00152 was aberrantly overexpressed in colorectal tumors and cancer cells and that lnc00152 was modulated by miRNA‑206. lnc00152 overexpression enhanced the proliferative and invasive ability of CRC cells in vitro, promoted tumor growth in vivo, and was associated with the shorter overall survival of patients with CRC. In addition, lnc00152 overexpression promoted epithelial-mesenchymal transition (EMT) and increased neuropilin‑1 (NRP1) expression in the CRC cells. By contrast, lnc00152 silencing exerted a counteractive effect. Collectively, these findings demonstrate the critical role of lnc00152 in tumor growth and progression in CRC, and identify a novel therapeutic target associated with CRC development and progression.
Collapse
Affiliation(s)
- Zhuan-Peng Chen
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Jian-Chang Wei
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Qiang Wang
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Ping Yang
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Wang-Lin Li
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Feng He
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Hua-Cui Chen
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - He Hu
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Jun-Bin Zhong
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| | - Jie Cao
- Department of Gastrointestinal Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou Guangdong 510180, P.R. China
| |
Collapse
|
48
|
Identification and functional analysis of long non-coding RNAs in human and mouse early embryos based on single-cell transcriptome data. Oncotarget 2018; 7:61215-61228. [PMID: 27542205 PMCID: PMC5308646 DOI: 10.18632/oncotarget.11304] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/08/2016] [Indexed: 11/25/2022] Open
Abstract
Epigenetics regulations have an important role in fertilization and proper embryonic development, and several human diseases are associated with epigenetic modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and Angelman syndrome. However, the dynamics and functions of long non-coding RNAs (lncRNAs), one type of epigenetic regulators, in human pre-implantation development have not yet been demonstrated. In this study, a comprehensive analysis of human and mouse early-stage embryonic lncRNAs was performed based on public single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed in a developmental stage-specific manner during human early-stage embryonic development, whereas a more temporal-specific expression pattern was identified in mouse embryos. Weighted gene co-expression network analysis suggested that lncRNAs involved in human early-stage embryonic development are associated with several important functions and processes, such as oocyte maturation, zygotic genome activation and mitochondrial functions. We also found that the network of lncRNAs involved in zygotic genome activation was highly preservative between human and mouse embryos, whereas in other stages no strong correlation between human and mouse embryo was observed. This study provides insight into the molecular mechanism underlying lncRNA involvement in human pre-implantation embryonic development.
Collapse
|
49
|
Fu Q, Liu CJ, Zhai ZS, Zhang X, Qin T, Zhang HW. Single-Cell Non-coding RNA in Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:19-32. [DOI: 10.1007/978-981-13-0502-3_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
APTR is a prognostic marker in cirrhotic patients with portal hypertension during TIPS procedure. Gene 2017; 645:30-33. [PMID: 29274906 DOI: 10.1016/j.gene.2017.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Portal hypertension is a major cause of mortality and morbidity in cirrhotic patients. In this study, we aimed to analyze the clinical characteristics of Alu-mediated p21 transcriptional regulator (APTR) during transjugular intrahepatic portosystemic shunt (TIPS) procedure. Portal and hepatic venous blood was drawn from 84 patients with liver cirrhosis and portal hypertension before and after TIPS treatment. Then, we detected biochemical, hemodynamic parameters and APTR expression before and after TIPS treatment. Indeed, TIPS treatment could markedly ameliorate the serum blood urea nitrogen (BUN) level and portal vein hemodynamics in cirrhotic patients. We found that portal venous levels of APTR was significantly decreased after TIPS treatment and its aberrant expression levels were positively correlated with Model for End Stage Liver Disease (MELD), portal hepatic venous pressure gradient (PHPG) in patients. Higher APTR expression in portal vein was associated with poor prognosis. APTR level in portal vein was an independent predictors of mortality. Our data indicated that APTR may serve as a novel biomarker for cirrhotic patients with portal hypertension before and after receiving TIPS.
Collapse
|