1
|
Secondulfo C, Mazzeo F, Pastorino GMG, Vicidomini A, Meccariello R, Operto FF. Opioid and Cannabinoid Systems in Pain: Emerging Molecular Mechanisms and Use in Clinical Practice, Health, and Fitness. Int J Mol Sci 2024; 25:9407. [PMID: 39273354 PMCID: PMC11394805 DOI: 10.3390/ijms25179407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Pain is an unpleasant sensory and emotional experience. Adequate pain control is often challenging, particularly in patients with chronic pain. Despite advances in pain management, drug addiction, overtreatment, or substance use disorders are not rare. Hence the need for further studies in the field. The substantial progress made over the last decade has revealed genes, signalling pathways, molecules, and neuronal networks in pain control thus opening new clinical perspectives in pain management. In this respect, data on the epigenetic modulation of opioid and cannabinoid receptors, key actors in the modulation of pain, offered new perspectives to preserve the activity of opioid and endocannabinoid systems to increase the analgesic efficacy of opioid- and cannabinoid-based drugs. Similarly, upcoming data on cannabidiol (CBD), a non-psychoactive cannabinoid in the marijuana plant Cannabis sativa, suggests analgesic, anti-inflammatory, antioxidant, anticonvulsivant and ansiolitic effects and supports its potential application in clinical contexts such as cancer, neurodegeneration, and autoimmune diseases but also in health and fitness with potential use in athletes. Hence, in this review article, we summarize the emerging epigenetic modifications of opioid and cannabinoid receptors and focus on CBD as an emerging non-psychoactive cannabinoid in pain management in clinical practice, health, and fitness.
Collapse
Affiliation(s)
- Carmine Secondulfo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples Parthenope, 80035 Nola, Italy
| | - Grazia Maria Giovanna Pastorino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Child and Adolescent Neuropsychiatry Unit, "San Giovanni di Dio e Ruggi d'Aragona" Hospital, 84131 Salerno, Italy
| | - Antonella Vicidomini
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Rosaria Meccariello
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Francesca Felicia Operto
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Wu Q, Wei G, Ji F, Jia S, Wu S, Guo X, He L, Pan Z, Miao X, Mao Q, Yang Y, Cao M, Tao YX. TET1 Overexpression Mitigates Neuropathic Pain Through Rescuing the Expression of μ-Opioid Receptor and Kv1.2 in the Primary Sensory Neurons. Neurotherapeutics 2019; 16:491-504. [PMID: 30515739 PMCID: PMC6554405 DOI: 10.1007/s13311-018-00689-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Peripheral nerve injury downregulates the expression of the μ-opioid receptor (MOR) and voltage-gated potassium channel subunit Kv1.2 by increasing their DNA methylation in the dorsal root ganglion (DRG). Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) causes DNA demethylation. Given that DRG MOR and Kv1.2 downregulation contribute to neuropathic pain genesis, this study investigated the effect of DRG TET1 overexpression on neuropathic pain. Overexpression of TET1 in the DRG through microinjection of herpes simplex virus expressing full-length TET1 mRNA into the injured rat DRG significantly alleviated the fifth lumbar spinal nerve ligation (SNL)-induced pain hypersensitivities during the development and maintenance periods, without altering acute pain or locomotor function. This microinjection also restored morphine analgesia and attenuated morphine analgesic tolerance development after SNL. Mechanistically, TET1 microinjection rescued the expression of MOR and Kv1.2 by reducing the level of 5-methylcytosine and increasing the level of 5-hydroxymethylcytosine in the promoter and 5' untranslated regions of the Oprml1 gene (encoding MOR) and in the promoter region of the Kcna2 gene (encoding Kv1.2) in the DRG ipsilateral to SNL. These findings suggest that DRG TET1 overexpression mitigated neuropathic pain likely through rescue of MOR and Kv1.2 expression in the ipsilateral DRG. Virus-mediated DRG delivery of TET1 may open a new avenue for neuropathic pain management.
Collapse
Affiliation(s)
- Qiang Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Guihua Wei
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
- Department of Pharmacy, Institute of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Fengtao Ji
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Shushan Jia
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Xinying Guo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Long He
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Zhiqiang Pan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Xuerong Miao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Qingxiang Mao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Yong Yang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 S. Orange Ave., MSB, E-661, Newark, NJ, 07103, USA.
| |
Collapse
|
3
|
Tao W, Zhou W, Wang Y, Sun T, Wang H, Zhang Z, Jin Y. Histone deacetylase inhibitor-induced emergence of synaptic δ-opioid receptors and behavioral antinociception in persistent neuropathic pain. Neuroscience 2016; 339:54-63. [PMID: 27646288 DOI: 10.1016/j.neuroscience.2016.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/31/2016] [Accepted: 09/09/2016] [Indexed: 11/16/2022]
Abstract
The efficacy of opioids in patients with chronic neuropathic pain remains controversial. Although activation of δ-opioid receptors (DORs) in the brainstem reduces inflammation-induced persistent hyperalgesia, it is not effective under persistent neuropathic pain conditions and these clinical problems remain largely unknown. In this study, by using a chronic constriction injury (CCI) of the sciatic nerve in rats, we found that in the brainstem nucleus raphe magnus (NRM), DORs emerged on the surface membrane of central synaptic terminals on day 3 after CCI surgery and disappeared on day 14. Histone deacetylase (HDAC) inhibitors microinjected into the NRM in vivo increased the level of synaptosomal DOR protein and NRM infusion of DOR agonists producing an antinociceptive effect in a nerve growth factor (NGF) signaling-dependent manner. In vitro, in CCI rat slices incubated with HDAC inhibitors, DOR agonists significantly inhibited EPSCs. This effect was blocked by tyrosine receptor kinase A antagonists. Chromatin immunoprecipitation analysis revealed that NRM infusion of HDAC inhibitors in CCI rats increased the level of histone H4 acetylation at Ngf gene promoter regions. NGF was infused into the NRM or incubated CCI rat slices drove DORs to the surface membrane of synaptic terminals. Taken together, epigenetic upregulation of NGF activity by HDAC inhibitors in the NRM promotes the trafficking of DORs to pain-modulating neuronal synapses under neuropathic pain conditions, leading to δ-opioid analgesia. These findings indicate that therapeutic use of DOR agonists combined with HDAC inhibitors might be effective in chronic neuropathic pain managements.
Collapse
Affiliation(s)
- Wenjuan Tao
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenjie Zhou
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuping Wang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Tingting Sun
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haitao Wang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhi Zhang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yan Jin
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|