1
|
Dutcher HA, Hose J, Howe H, Rojas J, Gasch AP. The response to single-gene duplication implicates translation as a key vulnerability in aneuploid yeast. PLoS Genet 2024; 20:e1011454. [PMID: 39453980 PMCID: PMC11540229 DOI: 10.1371/journal.pgen.1011454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/06/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024] Open
Abstract
Aneuploidy produces myriad consequences in health and disease, yet models of the deleterious effects of chromosome amplification are still widely debated. To distinguish the molecular determinants of aneuploidy stress, we measured the effects of duplicating individual genes in cells with different chromosome duplications, in wild-type cells (SSD1+) and cells sensitized to aneuploidy by deletion of RNA-binding protein Ssd1 (ssd1Δ). We identified gene duplications that are nearly neutral in wild-type euploid cells but significantly deleterious in euploids lacking SSD1 or in SSD1+ aneuploid cells with different chromosome duplications. Several of the most deleterious genes are linked to translation. In contrast, duplication of other genes benefits multiple ssd1Δ aneuploids over controls, and this group is enriched for translational effectors. Furthermore, both wild-type and especially ssd1Δ aneuploids with different chromosome amplifications show increased sensitivity to translational inhibitor nourseothricin. We used comparative modeling of aneuploid growth defects, based on the cumulative fitness costs measured for single-gene duplication. Our results present a model in which the deleterious effects of aneuploidy emerge from an interaction between the cumulative burden of many amplified genes on a chromosome and a subset of duplicated genes that become toxic in that context. These findings provide a perspective on the dual impact of individual genes and overall genomic burden, offering new avenues for understanding aneuploidy and its cellular consequences.
Collapse
Affiliation(s)
- H. Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hollis Howe
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Escalante LE, Hose J, Howe H, Paulsen N, Place M, Gasch AP. Premature aging in aneuploid yeast is caused in part by aneuploidy-induced defects in Ribosome Quality Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600216. [PMID: 38948718 PMCID: PMC11213126 DOI: 10.1101/2024.06.22.600216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Premature aging is a hallmark of Down syndrome, caused by trisomy of human chromosome 21, but the reason is unclear and difficult to study in humans. We used an aneuploid model in wild yeast to show that chromosome amplification disrupts nutrient-induced cell-cycle arrest, quiescence entry, and healthy aging, across genetic backgrounds and amplified chromosomes. We discovered that these defects are due in part to aneuploidy-induced dysfunction in Ribosome Quality Control (RQC). Compared to euploids, aneuploids entering quiescence display aberrant ribosome profiles, accumulate RQC intermediates, and harbor an increased load of protein aggregates. Although they have normal proteasome capacity, aneuploids show signs of ubiquitin dysregulation, which impacts cyclin abundance to disrupt arrest. Remarkably, inducing ribosome stalling in euploids produces similar aberrations, while up-regulating limiting RQC subunits or proteins in ubiquitin metabolism alleviates many of the aneuploid defects. Our results provide implications for other aneuploidy disorders including Down syndrome.
Collapse
Affiliation(s)
- Leah E. Escalante
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Hollis Howe
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Norah Paulsen
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
3
|
Dutcher HA, Hose J, Howe H, Rojas J, Gasch AP. The response to single-gene duplication implicates translation as a key vulnerability in aneuploid yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589582. [PMID: 38659764 PMCID: PMC11042342 DOI: 10.1101/2024.04.15.589582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Aneuploidy produces myriad consequences in health and disease, yet models of the deleterious effects of chromosome amplification are still widely debated. To distinguish the molecular determinants of aneuploidy stress, we measured the effects of duplicating individual genes in cells with varying chromosome duplications, in wild-type cells and cells sensitized to aneuploidy by deletion of RNA-binding protein Ssd1. We identified gene duplications that are nearly neutral in wild-type euploid cells but significantly deleterious in euploids lacking SSD1 or SSD1+ aneuploid cells with different chromosome duplications. Several of the most deleterious genes are linked to translation; in contrast, duplication of other translational regulators, including eI5Fa Hyp2, benefit ssd1Δ aneuploids over controls. Using modeling of aneuploid growth defects, we propose that the deleterious effects of aneuploidy emerge from an interaction between the cumulative burden of many amplified genes on a chromosome and a subset of duplicated genes that become toxic in that context. Our results suggest that the mechanism behind their toxicity is linked to a key vulnerability in translation in aneuploid cells. These findings provide a perspective on the dual impact of individual genes and overall genomic burden, offering new avenues for understanding aneuploidy and its cellular consequences.
Collapse
|
4
|
Rojas J, Hose J, Auguste Dutcher H, Place M, Wolters JF, Hittinger CT, Gasch AP. Comparative modeling reveals the molecular determinants of aneuploidy fitness cost in a wild yeast model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588778. [PMID: 38645209 PMCID: PMC11030387 DOI: 10.1101/2024.04.09.588778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will only be maintained if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74-94% of the variance in aneuploid strains' growth rates is explained by the additive cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of snoRNAs and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.
Collapse
Affiliation(s)
- Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Place
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John F Wolters
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chris Todd Hittinger
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Cornejo FA, Muñoz-Villagrán C, Luraschi RA, Sandoval-Díaz MP, Cancino CA, Pugin B, Morales EH, Piotrowski JS, Sandoval JM, Vásquez CC, Arenas FA. Soft-metal(loid)s induce protein aggregation in Escherichia coli. Front Microbiol 2023; 14:1281058. [PMID: 38075883 PMCID: PMC10699150 DOI: 10.3389/fmicb.2023.1281058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/01/2023] [Indexed: 10/08/2024] Open
Abstract
Metal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV). Nevertheless, few reports have described the direct, or ROS-independent, effects of some of these soft-metal(loid)s on bacteria, including the dismantling of iron-sulfur clusters [4Fe-4S] and the accumulation of porphyrin IX. Here, we used genome-wide genetic, proteomic, and biochemical approaches under anaerobic conditions to evaluate the direct mechanisms of toxicity of these metal(loid)s in Escherichia coli. We found that certain soft-metal(loid)s promote protein aggregation in a ROS-independent manner. This aggregation occurs during translation in the presence of Ag(I), Au(III), Hg(II), or Te(IV) and post-translationally in cells exposed to Cd(II) or As(III). We determined that aggregated proteins were involved in several essential biological processes that could lead to cell death. For instance, several enzymes involved in amino acid biosynthesis were aggregated after soft-metal(loid) exposure, disrupting intracellular amino acid concentration. We also propose a possible mechanism to explain how soft-metal(loid)s act as proteotoxic agents.
Collapse
Affiliation(s)
- Fabián A. Cornejo
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Roberto A. Luraschi
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María P. Sandoval-Díaz
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Camila A. Cancino
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Benoit Pugin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| | | | | | | | - Claudio C. Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe A. Arenas
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
6
|
Rosemary essential oil and its components 1,8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albicans. PLoS One 2022; 17:e0277097. [DOI: 10.1371/journal.pone.0277097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oil from Rosmarinus officinalis L., a composite mixture of plant-derived secondary metabolites, exhibits antifungal activity against virulent candidal species. Here we report the impact of rosemary oil and two of its components, the monoterpene α-pinene and the monoterpenoid 1,8-cineole, against Candida albicans, which induce ROS-dependent cell death at high concentrations and inhibit hyphal morphogenesis and biofilm formation at lower concentrations. The minimum inhibitory concentrations (100% inhibition) for both rosemary oil and 1,8-cineole were 4500 μg/ml and 3125 μg/ml for α-pinene, with the two components exhibiting partial synergy (FICI = 0.55 ± 0.07). At MIC and 1/2 MIC, rosemary oil and its components induced a generalized cell wall stress response, causing damage to cellular and organelle membranes, along with elevated chitin production and increased cell surface adhesion and elasticity, leading to complete vacuolar segregation, mitochondrial depolarization, elevated reactive oxygen species, microtubule dysfunction, and cell cycle arrest mainly at the G1/S phase, consequently triggering cell death. Interestingly, the same oils at lower fractional MIC (1/8-1/4) inhibited virulence traits, including reduction of mycelium (up to 2-fold) and biofilm (up to 4-fold) formation, through a ROS-independent mechanism.
Collapse
|
7
|
Vanacloig-Pedros E, Fisher KJ, Liu L, Debrauske DJ, Young MKM, Place M, Hittinger CT, Sato TK, Gasch AP. Comparative chemical genomic profiling across plant-based hydrolysate toxins reveals widespread antagonism in fitness contributions. FEMS Yeast Res 2022; 21:6650360. [PMID: 35883225 PMCID: PMC9508847 DOI: 10.1093/femsyr/foac036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been used extensively in fermentative industrial processes, including biofuel production from sustainable plant-based hydrolysates. Myriad toxins and stressors found in hydrolysates inhibit microbial metabolism and product formation. Overcoming these stresses requires mitigation strategies that include strain engineering. To identify shared and divergent mechanisms of toxicity and to implicate gene targets for genetic engineering, we used a chemical genomic approach to study fitness effects across a library of S. cerevisiae deletion mutants cultured anaerobically in dozens of individual compounds found in different types of hydrolysates. Relationships in chemical genomic profiles identified classes of toxins that provoked similar cellular responses, spanning inhibitor relationships that were not expected from chemical classification. Our results also revealed widespread antagonistic effects across inhibitors, such that the same gene deletions were beneficial for surviving some toxins but detrimental for others. This work presents a rich dataset relating gene function to chemical compounds, which both expands our understanding of plant-based hydrolysates and provides a useful resource to identify engineering targets.
Collapse
Affiliation(s)
- Elena Vanacloig-Pedros
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Kaitlin J Fisher
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Lisa Liu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Derek J Debrauske
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Megan K M Young
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Michael Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Trey K Sato
- Corresponding author: Trey K. Sato, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 4117 Wisconsin Energy Institute, 1552 University Ave, Madison, WI 53726. Tel: (608) 890-2546; E-mail:
| | - Audrey P Gasch
- Corresponding author: Audrey P. Gasch, Center for Genomic Science Innovation, University of Wisconsin-Madison, 3422 Genetics-Biotechnology Center, 425 Henry Mall, Madison, WI 53704, United States. Tel: (608)265-0859; E-mail:
| |
Collapse
|
8
|
High-throughput platform for yeast morphological profiling predicts the targets of bioactive compounds. NPJ Syst Biol Appl 2022; 8:3. [PMID: 35087094 PMCID: PMC8795194 DOI: 10.1038/s41540-022-00212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
Morphological profiling is an omics-based approach for predicting intracellular targets of chemical compounds in which the dose-dependent morphological changes induced by the compound are systematically compared to the morphological changes in gene-deleted cells. In this study, we developed a reliable high-throughput (HT) platform for yeast morphological profiling using drug-hypersensitive strains to minimize compound use, HT microscopy to speed up data generation and analysis, and a generalized linear model to predict targets with high reliability. We first conducted a proof-of-concept study using six compounds with known targets: bortezomib, hydroxyurea, methyl methanesulfonate, benomyl, tunicamycin, and echinocandin B. Then we applied our platform to predict the mechanism of action of a novel diferulate-derived compound, poacidiene. Morphological profiling of poacidiene implied that it affects the DNA damage response, which genetic analysis confirmed. Furthermore, we found that poacidiene inhibits the growth of phytopathogenic fungi, implying applications as an effective antifungal agent. Thus, our platform is a new whole-cell target prediction tool for drug discovery.
Collapse
|
9
|
Chandrasekar M, Joshi L, Krieg K, Chipkar S, Burke E, Debrauske DJ, Thelen KD, Sato TK, Ong RG. A high solids field-to-fuel research pipeline to identify interactions between feedstocks and biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:179. [PMID: 34507592 PMCID: PMC8431876 DOI: 10.1186/s13068-021-02033-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Environmental factors, such as weather extremes, have the potential to cause adverse effects on plant biomass quality and quantity. Beyond adversely affecting feedstock yield and composition, which have been extensively studied, environmental factors can have detrimental effects on saccharification and fermentation processes in biofuel production. Only a few studies have evaluated the effect of these factors on biomass deconstruction into biofuel and resulting fuel yields. This field-to-fuel evaluation of various feedstocks requires rigorous coordination of pretreatment, enzymatic hydrolysis, and fermentation experiments. A large number of biomass samples, often in limited quantity, are needed to thoroughly understand the effect of environmental conditions on biofuel production. This requires greater processing and analytical throughput of industrially relevant, high solids loading hydrolysates for fermentation, and led to the need for a laboratory-scale high solids experimentation platform. RESULTS A field-to-fuel platform was developed to provide sufficient volumes of high solids loading enzymatic hydrolysate for fermentation. AFEX pretreatment was conducted in custom pretreatment reactors, followed by high solids enzymatic hydrolysis. To accommodate enzymatic hydrolysis of multiple samples, roller bottles were used to overcome the bottlenecks of mixing and reduced sugar yields at high solids loading, while allowing greater sample throughput than possible in bioreactors. The roller bottle method provided 42-47% greater liquefaction compared to the batch shake flask method for the same solids loading. In fermentation experiments, hydrolysates from roller bottles were fermented more rapidly, with greater xylose consumption, but lower final ethanol yields and CO2 production than hydrolysates generated with shake flasks. The entire platform was tested and was able to replicate patterns of fermentation inhibition previously observed for experiments conducted in larger-scale reactors and bioreactors, showing divergent fermentation patterns for drought and normal year switchgrass hydrolysates. CONCLUSION A pipeline of small-scale AFEX pretreatment and roller bottle enzymatic hydrolysis was able to provide adequate quantities of hydrolysate for respirometer fermentation experiments and was able to overcome hydrolysis bottlenecks at high solids loading by obtaining greater liquefaction compared to batch shake flask hydrolysis. Thus, the roller bottle method can be effectively utilized to compare divergent feedstocks and diverse process conditions.
Collapse
Affiliation(s)
- Meenaa Chandrasekar
- DOE Great Lakes Bioenergy Research Center, Michigan Technological University, Houghton, MI, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Leela Joshi
- DOE Great Lakes Bioenergy Research Center, Michigan Technological University, Houghton, MI, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Karleigh Krieg
- DOE Great Lakes Bioenergy Research Center, Michigan Technological University, Houghton, MI, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Sarvada Chipkar
- DOE Great Lakes Bioenergy Research Center, Michigan Technological University, Houghton, MI, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Emily Burke
- DOE Great Lakes Bioenergy Research Center, Michigan Technological University, Houghton, MI, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Derek J Debrauske
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison, Madison, USA
| | - Kurt D Thelen
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison, Madison, USA
| | - Rebecca G Ong
- DOE Great Lakes Bioenergy Research Center, Michigan Technological University, Houghton, MI, USA.
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
10
|
Robinson D, Place M, Hose J, Jochem A, Gasch AP. Natural variation in the consequences of gene overexpression and its implications for evolutionary trajectories. eLife 2021; 10:e70564. [PMID: 34338637 PMCID: PMC8352584 DOI: 10.7554/elife.70564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Copy number variation through gene or chromosome amplification provides a route for rapid phenotypic variation and supports the long-term evolution of gene functions. Although the evolutionary importance of copy-number variation is known, little is understood about how genetic background influences its tolerance. Here, we measured fitness costs of over 4000 overexpressed genes in 15 Saccharomyces cerevisiae strains representing different lineages, to explore natural variation in tolerating gene overexpression (OE). Strain-specific effects dominated the fitness costs of gene OE. We report global differences in the consequences of gene OE, independent of the amplified gene, as well as gene-specific effects that were dependent on the genetic background. Natural variation in the response to gene OE could be explained by several models, including strain-specific physiological differences, resource limitations, and regulatory sensitivities. This work provides new insight on how genetic background influences tolerance to gene amplification and the evolutionary trajectories accessible to different backgrounds.
Collapse
Affiliation(s)
- DeElegant Robinson
- Microbiology Doctoral Training Program, University of Wisconsin-MadisonMadisonUnited States
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-MadisonMadisonUnited States
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-MadisonMadisonUnited States
| | - Adam Jochem
- Center for Genomic Science Innovation, University of Wisconsin-MadisonMadisonUnited States
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-MadisonMadisonUnited States
- Center for Genomic Science Innovation, University of Wisconsin-MadisonMadisonUnited States
- Department of Medical Genetics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
11
|
Zhang F, Zhao M, Braun DR, Ericksen SS, Piotrowski JS, Nelson J, Peng J, Ananiev GE, Chanana S, Barns K, Fossen J, Sanchez H, Chevrette MG, Guzei IA, Zhao C, Guo L, Tang W, Currie CR, Rajski SR, Audhya A, Andes DR, Bugni TS. A marine microbiome antifungal targets urgent-threat drug-resistant fungi. Science 2020; 370:974-978. [PMID: 33214279 PMCID: PMC7756952 DOI: 10.1126/science.abd6919] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris.
Collapse
Affiliation(s)
- Fan Zhang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Miao Zhao
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Doug R Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Spencer S Ericksen
- Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | | | | | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Ananiev
- Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth Barns
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Jen Fossen
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Changgui Zhao
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Le Guo
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Weiping Tang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron R Currie
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott R Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Alqahtani FM, Arivett BA, Taylor ZE, Handy ST, Farone AL, Farone MB. Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound. PLoS One 2019; 14:e0226068. [PMID: 31825988 PMCID: PMC6905557 DOI: 10.1371/journal.pone.0226068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Every year, more than 250,000 invasive candidiasis infections are reported with 50,000 deaths worldwide. The limited number of antifungal agents necessitates the need for alternative antifungals with potential novel targets. The 2-benzylidenebenzofuran-3-(2H)-ones have become an attractive scaffold for antifungal drug design. This study aimed to determine the antifungal activity of a synthetic aurone compound and characterize its mode of action. Using the broth microdilution method, aurone SH1009 exhibited inhibition against C. albicans, including resistant isolates, as well as C. glabrata, and C. tropicalis with IC50 values of 4-29 μM. Cytotoxicity assays using human THP-1, HepG2, and A549 human cell lines showed selective toxicity toward fungal cells. The mode of action for SH1009 was characterized using chemical-genetic interaction via haploinsufficiency (HIP) and homozygous (HOP) profiling of a uniquely barcoded Saccharomyces cerevisiae mutant collection. Approximately 5300 mutants were competitively treated with SH1009 followed by DNA extraction, amplification of unique barcodes, and quantification of each mutant using multiplexed next-generation sequencing. Barcode post-sequencing analysis revealed 238 sensitive and resistant mutants that significantly (FDR P values ≤ 0.05) responded to aurone SH1009. The enrichment analysis of KEGG pathways and gene ontology demonstrated the cell cycle pathway as the most significantly enriched pathway along with DNA replication, cell division, actin cytoskeleton organization, and endocytosis. Phenotypic studies of these significantly enriched responses were validated in C. albicans. Flow cytometric analysis of SH1009-treated C. albicans revealed a significant accumulation of cells in G1 phase, indicating cell cycle arrest. Fluorescence microscopy detected abnormally interrupted actin dynamics, resulting in enlarged, unbudded cells. RT-qPCR confirmed the effects of SH1009 in differentially expressed cell cycle, actin polymerization, and signal transduction genes. These findings indicate the target of SH1009 as a cell cycle-dependent organization of the actin cytoskeleton, suggesting a novel mode of action of the aurone compound as an antifungal inhibitor.
Collapse
Affiliation(s)
- Fatmah M. Alqahtani
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Brock A. Arivett
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Zachary E. Taylor
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Scott T. Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Anthony L. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Mary B. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| |
Collapse
|
13
|
Decyl Gallate as a Possible Inhibitor of N-Glycosylation Process in Paracoccidioides lutzii. Antimicrob Agents Chemother 2019; 63:AAC.01909-18. [PMID: 31451502 DOI: 10.1128/aac.01909-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/28/2019] [Indexed: 01/29/2023] Open
Abstract
The available antifungal therapeutic arsenal is limited. The search for alternative drugs with fewer side effects and new targets remains a major challenge. Decyl gallate (G14) is a derivative of gallic acid with a range of biological activities and broad-spectrum antifungal activity. Previously, our group demonstrated the promising anti-Paracoccidioides activity of G14. In this work, to evaluate the antifungal characteristics of G14 for Paracoccidioides lutzii, a chemical-genetic interaction analysis was conducted on a Saccharomyces cerevisiae model. N-glycosylation and/or the unfolded protein response pathway was identified as a high-confidence process for drug target prediction. The overactivation of unfolded protein response (UPR) signaling was confirmed using this model with IRE1/ATF6/PERK genes tagged with green fluorescent protein (GFP). In P. lutzii, this prediction was confirmed by the low activity of glycosylated enzymes [α-(1,3)-glucanase, N-acetyl-β-d-glucosaminidase (NAGase), and α-(1,4)-amylase], by hyperexpression of genes involved with the UPR and glycosylated enzymes, and by the reduction in the amounts of glycosylated proteins and chitin. All of these components are involved in fungal cell wall integrity and are dependent on the N-glycosylation process. This loss of integrity was confirmed by the reduction in mitochondrial activity, impaired budding, enhancement of wall permeability, and a decrease in viability. These events led to a reduction of the ability of fungi to adhere on human lung epithelial cells (A549) in vitro Therefore, G14 may have an important role in balancing the inflammatory reaction caused by fungal infection, without interfering with the microbicidal activity of nitric oxide. This work provides new information on the activity of G14, a potential anti-Paracoccidioides compound.
Collapse
|
14
|
Simpkins SW, Deshpande R, Nelson J, Li SC, Piotrowski JS, Ward HN, Yashiroda Y, Osada H, Yoshida M, Boone C, Myers CL. Using BEAN-counter to quantify genetic interactions from multiplexed barcode sequencing experiments. Nat Protoc 2019; 14:415-440. [PMID: 30635653 DOI: 10.1038/s41596-018-0099-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The construction of genome-wide mutant collections has enabled high-throughput, high-dimensional quantitative characterization of gene and chemical function, particularly via genetic and chemical-genetic interaction experiments. As the throughput of such experiments increases with improvements in sequencing technology and sample multiplexing, appropriate tools must be developed to handle the large volume of data produced. Here, we describe how to apply our approach to high-throughput, fitness-based profiling of pooled mutant yeast collections using the BEAN-counter software pipeline (Barcoded Experiment Analysis for Next-generation sequencing) for analysis. The software has also successfully processed data from Schizosaccharomyces pombe, Escherichia coli, and Zymomonas mobilis mutant collections. We provide general recommendations for the design of large-scale, multiplexed barcode sequencing experiments. The procedure outlined here was used to score interactions for ~4 million chemical-by-mutant combinations in our recently published chemical-genetic interaction screen of nearly 14,000 chemical compounds across seven diverse compound collections. Here we selected a representative subset of these data on which to demonstrate our analysis pipeline. BEAN-counter is open source, written in Python, and freely available for academic use. Users should be proficient at the command line; advanced users who wish to analyze larger datasets with hundreds or more conditions should also be familiar with concepts in analysis of high-throughput biological data. BEAN-counter encapsulates the knowledge we have accumulated from, and successfully applied to, our multiplexed, pooled barcode sequencing experiments. This protocol will be useful to those interested in generating their own high-dimensional, quantitative characterizations of gene or chemical function in a high-throughput manner.
Collapse
Affiliation(s)
- Scott W Simpkins
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Raamesh Deshpande
- Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Justin Nelson
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sheena C Li
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Jeff S Piotrowski
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Yumanity Therapeutics, Cambridge, MA, USA
| | - Henry Neil Ward
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.,Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Chad L Myers
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota Twin Cities, Minneapolis, MN, USA. .,Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Water-soluble phenolic compounds produced from extractive ammonia pretreatment exerted binary inhibitory effects on yeast fermentation using synthetic hydrolysate. PLoS One 2018; 13:e0194012. [PMID: 29543873 PMCID: PMC5854342 DOI: 10.1371/journal.pone.0194012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/22/2018] [Indexed: 11/19/2022] Open
Abstract
Biochemical conversion of lignocellulosic biomass to liquid fuels requires pretreatment and enzymatic hydrolysis of the biomass to produce fermentable sugars. Degradation products produced during thermochemical pretreatment, however, inhibit the microbes with regard to both ethanol yield and cell growth. In this work, we used synthetic hydrolysates (SynH) to study the inhibition of yeast fermentation by water-soluble components (WSC) isolated from lignin streams obtained after extractive ammonia pretreatment (EA). We found that SynH with 20g/L WSC mimics real hydrolysate in cell growth, sugar consumption and ethanol production. However, a long lag phase was observed in the first 48 h of fermentation of SynH, which is not observed during fermentation with the crude extraction mixture. Ethyl acetate extraction was conducted to separate phenolic compounds from other water-soluble components. These phenolic compounds play a key inhibitory role during ethanol fermentation. The most abundant compounds were identified by Liquid Chromatography followed by Mass Spectrometry (LC-MS) and Gas Chromatography followed by Mass Spectrometry (GC-MS), including coumaroyl amide, feruloyl amide and coumaroyl glycerol. Chemical genomics profiling was employed to fingerprint the gene deletion response of yeast to different groups of inhibitors in WSC and AFEX-Pretreated Corn Stover Hydrolysate (ACSH). The sensitive/resistant genes cluster patterns for different fermentation media revealed their similarities and differences with regard to degradation compounds.
Collapse
|
16
|
Simultaneous characterization of chemical structures and bioactivities of citrus-derived components using SERS barcodes. Food Chem 2018; 240:743-750. [DOI: 10.1016/j.foodchem.2017.07.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/29/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022]
|
17
|
Bottoms S, Dickinson Q, McGee M, Hinchman L, Higbee A, Hebert A, Serate J, Xie D, Zhang Y, Coon JJ, Myers CL, Landick R, Piotrowski JS. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast. Microb Cell Fact 2018; 17:5. [PMID: 29329531 PMCID: PMC5767017 DOI: 10.1186/s12934-017-0848-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Background Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. Results Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. Conclusions We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain. This strain represents a xylose fermenting yeast specifically tailored to GVL produced hydrolysates. Electronic supplementary material The online version of this article (10.1186/s12934-017-0848-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Bottoms
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, USA.,Lehrstuhl für Chemie Biogener Rohstoffe, Technische Universität München, Schulgasse 16, 94315, Straubing, Germany
| | - Quinn Dickinson
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, USA.,School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mick McGee
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, USA
| | - Li Hinchman
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, USA
| | - Alan Higbee
- University of Wisconsin Biotechnology Center, Madison, WI, USA
| | - Alex Hebert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jose Serate
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, USA
| | - Dan Xie
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, USA
| | - Yaoping Zhang
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.,Genome Center of Wisconsin, Madison, WI, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Robert Landick
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, USA
| | - Jeff S Piotrowski
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, USA. .,Yumanity Therapeutics, 790 Memorial Drive, Suite 2C, Cambridge, MA, 02139, USA.
| |
Collapse
|
18
|
Adnani N, Chevrette MG, Adibhatla SN, Zhang F, Yu Q, Braun DR, Nelson J, Simpkins SW, McDonald BR, Myers CL, Piotrowski JS, Thompson CJ, Currie CR, Li L, Rajski SR, Bugni TS. Coculture of Marine Invertebrate-Associated Bacteria and Interdisciplinary Technologies Enable Biosynthesis and Discovery of a New Antibiotic, Keyicin. ACS Chem Biol 2017; 12:3093-3102. [PMID: 29121465 DOI: 10.1021/acschembio.7b00688] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advances in genomics and metabolomics have made clear in recent years that microbial biosynthetic capacities on Earth far exceed previous expectations. This is attributable, in part, to the realization that most microbial natural product (NP) producers harbor biosynthetic machineries not readily amenable to classical laboratory fermentation conditions. Such "cryptic" or dormant biosynthetic gene clusters (BGCs) encode for a vast assortment of potentially new antibiotics and, as such, have become extremely attractive targets for activation under controlled laboratory conditions. We report here that coculturing of a Rhodococcus sp. and a Micromonospora sp. affords keyicin, a new and otherwise unattainable bis-nitroglycosylated anthracycline whose mechanism of action (MOA) appears to deviate from those of other anthracyclines. The structure of keyicin was elucidated using high resolution MS and NMR technologies, as well as detailed molecular modeling studies. Sequencing of the keyicin BGC (within the Micromonospora genome) enabled both structural and genomic comparisons to other anthracycline-producing systems informing efforts to characterize keyicin. The new NP was found to be selectively active against Gram-positive bacteria including both Rhodococcus sp. and Mycobacterium sp. E. coli-based chemical genomics studies revealed that keyicin's MOA, in contrast to many other anthracyclines, does not invoke nucleic acid damage.
Collapse
Affiliation(s)
- Navid Adnani
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Marc G. Chevrette
- Department
of Bacteriology, University of Wisconsin, Madison, Wisconsin 53705, United States
- Department
of Genetics, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Srikar N. Adibhatla
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fan Zhang
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Qing Yu
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Justin Nelson
- Bioinformatics
and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Scott W. Simpkins
- Bioinformatics
and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Bradon R. McDonald
- Department
of Bacteriology, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Chad L. Myers
- Bioinformatics
and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
- Department
of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | | | | | - Cameron R. Currie
- Department
of Bacteriology, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Scott R. Rajski
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
19
|
Wyche TP, Ramos Alvarenga RF, Piotrowski JS, Duster MN, Warrack SR, Cornilescu G, De Wolfe TJ, Hou Y, Braun DR, Ellis GA, Simpkins SW, Nelson J, Myers CL, Steele J, Mori H, Safdar N, Markley JL, Rajski SR, Bugni TS. Chemical Genomics, Structure Elucidation, and in Vivo Studies of the Marine-Derived Anticlostridial Ecteinamycin. ACS Chem Biol 2017; 12:2287-2295. [PMID: 28708379 PMCID: PMC5697710 DOI: 10.1021/acschembio.7b00388] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A polyether antibiotic, ecteinamycin (1), was isolated from a marine Actinomadura sp., cultivated from the ascidian Ecteinascidia turbinata. 13C enrichment, high resolution NMR spectroscopy, and molecular modeling enabled elucidation of the structure of 1, which was validated on the basis of comparisons with its recently reported crystal structure. Importantly, ecteinamycin demonstrated potent activity against the toxigenic strain of Clostridium difficile NAP1/B1/027 (MIC = 59 ng/μL), as well as other toxigenic and nontoxigenic C. difficile isolates both in vitro and in vivo. Additionally, chemical genomics studies using Escherichia coli barcoded deletion mutants led to the identification of sensitive mutants such as trkA and kdpD involved in potassium cation transport and homeostasis supporting a mechanistic proposal that ecteinamycin acts as an ionophore antibiotic. This is the first antibacterial agent whose mechanism of action has been studied using E. coli chemical genomics. On the basis of these data, we propose ecteinamycin as an ionophore antibiotic that causes C. difficile detoxification and cell death via potassium transport dysregulation.
Collapse
Affiliation(s)
- Thomas P. Wyche
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - René F. Ramos Alvarenga
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | | | - Megan N. Duster
- Department of Medicine, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Simone R. Warrack
- Department of Medicine, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Travis J. De Wolfe
- Department of Food Science, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Yanpeng Hou
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Gregory A. Ellis
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Scott W. Simpkins
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Justin Nelson
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - James Steele
- Department of Food Science, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - John L. Markley
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
20
|
A New Natural Product Analog of Blasticidin S Reveals Cellular Uptake Facilitated by the NorA Multidrug Transporter. Antimicrob Agents Chemother 2017; 61:AAC.02635-16. [PMID: 28373194 DOI: 10.1128/aac.02635-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/29/2017] [Indexed: 01/27/2023] Open
Abstract
The permeation of antibiotics through bacterial membranes to their target site is a crucial determinant of drug activity but in many cases remains poorly understood. During screening efforts to discover new broad-spectrum antibiotic compounds from marine sponge samples, we identified a new analog of the peptidyl nucleoside antibiotic blasticidin S that exhibited up to 16-fold-improved potency against a range of laboratory and clinical bacterial strains which we named P10. Whole-genome sequencing of laboratory-evolved strains of Staphylococcus aureus resistant to blasticidin S and P10, combined with genome-wide assessment of the fitness of barcoded Escherichia coli knockout strains in the presence of the antibiotics, revealed that restriction of cellular access was a key feature in the development of resistance to this class of drug. In particular, the gene encoding the well-characterized multidrug efflux pump NorA was found to be mutated in 69% of all S. aureus isolates resistant to blasticidin S or P10. Unexpectedly, resistance was associated with inactivation of norA, suggesting that the NorA transporter facilitates cellular entry of peptidyl nucleosides in addition to its known role in the efflux of diverse compounds, including fluoroquinolone antibiotics.
Collapse
|
21
|
Morales EH, Pinto CA, Luraschi R, Muñoz-Villagrán CM, Cornejo FA, Simpkins SW, Nelson J, Arenas FA, Piotrowski JS, Myers CL, Mori H, Vásquez CC. Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite. Nat Commun 2017; 8:15320. [PMID: 28492282 PMCID: PMC5437285 DOI: 10.1038/ncomms15320] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/21/2017] [Indexed: 01/08/2023] Open
Abstract
The metalloid tellurite is highly toxic to microorganisms. Several mechanisms of action have been proposed, including thiol depletion and generation of hydrogen peroxide and superoxide, but none of them can fully explain its toxicity. Here we use a combination of directed evolution and chemical and biochemical approaches to demonstrate that tellurite inhibits heme biosynthesis, leading to the accumulation of intermediates of this pathway and hydroxyl radical. Unexpectedly, the development of tellurite resistance is accompanied by increased susceptibility to hydrogen peroxide. Furthermore, we show that the heme precursor 5-aminolevulinic acid, which is used as an antimicrobial agent in photodynamic therapy, potentiates tellurite toxicity. Our results define a mechanism of tellurite toxicity and warrant further research on the potential use of the combination of tellurite and 5-aminolevulinic acid in antimicrobial therapy. The mechanisms of action of the antibacterial metalloid tellurite are unclear. Here, the authors show that tellurite induces an accumulation of hydroxyl radical and intermediates of heme biosynthesis in E. coli, and that the heme precursor 5-aminolevulinic acid potentiates tellurite toxicity.
Collapse
Affiliation(s)
- Eduardo H Morales
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Camilo A Pinto
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Roberto Luraschi
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | | | - Fabián A Cornejo
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Scott W Simpkins
- University of Minnesota-Twin Cities, Bioinformatics and Computational Biology, Minneapolis, Minnesota 55455, USA
| | - Justin Nelson
- University of Minnesota-Twin Cities, Bioinformatics and Computational Biology, Minneapolis, Minnesota 55455, USA
| | - Felipe A Arenas
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | | | - Chad L Myers
- University of Minnesota-Twin Cities, Bioinformatics and Computational Biology, Minneapolis, Minnesota 55455, USA.,University of Minnesota-Twin Cities, Department of Computer Science and Engineering, Minneapolis, Minnesota 55455, USA
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Claudio C Vásquez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
22
|
Peris D, Moriarty RV, Alexander WG, Baker E, Sylvester K, Sardi M, Langdon QK, Libkind D, Wang QM, Bai FY, Leducq JB, Charron G, Landry CR, Sampaio JP, Gonçalves P, Hyma KE, Fay JC, Sato TK, Hittinger CT. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:78. [PMID: 28360936 PMCID: PMC5369230 DOI: 10.1186/s13068-017-0763-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/18/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. RESULTS To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to cellulosic biofuel production. Notably, Saccharomyces mikatae strains have high innate tolerance to hydrolysate toxins, while some Saccharomyces species have a robust native capacity to consume xylose. CONCLUSIONS This research demonstrates that hybridization is a viable method to combine industrially relevant traits from diverse yeast species and that members of the genus Saccharomyces beyond S. cerevisiae may offer advantageous genes and traits of interest to the lignocellulosic biofuel industry.
Collapse
Affiliation(s)
- David Peris
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Ryan V. Moriarty
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - William G. Alexander
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - EmilyClare Baker
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Kayla Sylvester
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Maria Sardi
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Quinn K. Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, IPATEC (CONICET-UNComahue), Centro Regional Universitario Bariloche, Bariloche, Río Negro Argentina
| | - Qi-Ming Wang
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jean-Baptiste Leducq
- Departement des Sciences Biologiques, Université de Montréal, Montreal, QC Canada
- Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC Canada
| | - Guillaume Charron
- Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC Canada
| | - Christian R. Landry
- Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC Canada
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Katie E. Hyma
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Justin C. Fay
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
23
|
Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C. A global genetic interaction network maps a wiring diagram of cellular function. Science 2017; 353:353/6306/aaf1420. [PMID: 27708008 DOI: 10.1126/science.aaf1420] [Citation(s) in RCA: 791] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.
Collapse
Affiliation(s)
- Michael Costanzo
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Simons Center for Data Analysis, Simons Foundation, 160 Fifth Avenue, New York, NY 10010, USA
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Anastasia Baryshnikova
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Guihong Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Matej Usaj
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Julia Hanchard
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Susan D Lee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Vicent Pelechano
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Erin B Styles
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Maximilian Billmann
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Jolanda van Leeuwen
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Nydia van Dyk
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON, Canada
| | - Elena Kuzmin
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Justin Nelson
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Jeff S Piotrowski
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan
| | - Tharan Srikumar
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto ON, Canada
| | - Sondra Bahr
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Yiqun Chen
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Raamesh Deshpande
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Christoph F Kurat
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Sheena C Li
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan
| | - Zhijian Li
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Mojca Mattiazzi Usaj
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Hiroki Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan 277-8561
| | - Natasha Pascoe
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Bryan-Joseph San Luis
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Sara Sharifpoor
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Emira Shuteriqi
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Scott W Simpkins
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Jamie Snider
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Harsha Garadi Suresh
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Yizhao Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Hongwei Zhu
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Noel Malod-Dognin
- Computer Science Deptartment, University College London, London WC1E 6BT, UK
| | - Vuk Janjic
- Department of Computing, Imperial College London, UK
| | - Natasa Przulj
- Computer Science Deptartment, University College London, London WC1E 6BT, UK. School of Computing (RAF), Union University, Belgrade, Serbia
| | - Olga G Troyanskaya
- Simons Center for Data Analysis, Simons Foundation, 160 Fifth Avenue, New York, NY 10010, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Igor Stagljar
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tian Xia
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China, 430074
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan 277-8561
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto ON, Canada
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany. Department of Genetics, School of Medicine and Stanford Genome Technology Center Stanford University, Palo Alto, CA 94304, USA
| | - Claire L Moore
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Adam P Rosebrock
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Amy A Caudy
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA.
| | - Brenda Andrews
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1.
| | - Charles Boone
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan.
| |
Collapse
|
24
|
Ong RG, Higbee A, Bottoms S, Dickinson Q, Xie D, Smith SA, Serate J, Pohlmann E, Jones AD, Coon JJ, Sato TK, Sanford GR, Eilert D, Oates LG, Piotrowski JS, Bates DM, Cavalier D, Zhang Y. Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:237. [PMID: 27826356 PMCID: PMC5100259 DOI: 10.1186/s13068-016-0657-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/25/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strains of Saccharomyces cerevisiae and Zymomonas mobilis. A chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates. RESULTS While most corn stover and switchgrass hydrolysates were readily fermented, growth of S. cerevisiae was completely inhibited in hydrolysate generated from drought-stressed switchgrass. Based on chemical genomics analysis, yeast strains deficient in genes related to protein trafficking within the cell were significantly more resistant to the drought-year switchgrass hydrolysate. Detailed biomass and hydrolysate characterization revealed that switchgrass accumulated greater concentrations of soluble sugars in response to the drought and these sugars were subsequently degraded to pyrazines and imidazoles during ammonia-based pretreatment. When added ex situ to normal switchgrass hydrolysate, imidazoles and pyrazines caused anaerobic growth inhibition of S. cerevisiae. CONCLUSIONS In response to the osmotic pressures experienced during drought stress, plants accumulate soluble sugars that are susceptible to degradation during chemical pretreatments. For ammonia-based pretreatment, these sugars degrade to imidazoles and pyrazines. These compounds contribute to S. cerevisiae growth inhibition in drought-year switchgrass hydrolysate. This work discovered that variation in environmental conditions during the growth of bioenergy crops could have significant detrimental effects on fermentation organisms during biofuel production. These findings are relevant to regions where climate change is predicted to cause an increased incidence of drought and to marginal lands with poor water-holding capacity, where fluctuations in soil moisture may trigger frequent drought stress response in lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Rebecca Garlock Ong
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
- Department of Chemical Engineering, Michigan State University, East Lansing, MI USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI USA
| | - Alan Higbee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Scott Bottoms
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Quinn Dickinson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dan Xie
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Scott A. Smith
- RTSF Mass Spectrometry & Metabolomics Core, Michigan State University, East Lansing, MI USA
| | - Jose Serate
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Edward Pohlmann
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Arthur Daniel Jones
- RTSF Mass Spectrometry & Metabolomics Core, Michigan State University, East Lansing, MI USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI USA
- Department of Chemistry, Michigan State University, East Lansing, MI USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI USA
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Gregg R. Sanford
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI USA
| | - Dustin Eilert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Lawrence G. Oates
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI USA
| | - Jeff S. Piotrowski
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Donna M. Bates
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - David Cavalier
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
25
|
Sardi M, Rovinskiy N, Zhang Y, Gasch AP. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance. Appl Environ Microbiol 2016; 82:5838-49. [PMID: 27451446 PMCID: PMC5038035 DOI: 10.1128/aem.01603-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast) strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of the background-specific effects of gene fitness contributions in synthetic hydrolysate. Our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms. IMPORTANCE Recent studies on natural variation within Saccharomyces cerevisiae have uncovered substantial phenotypic diversity. Here, we took advantage of this diversity, using it as a tool to infer the effects of combinatorial stress found in lignocellulosic hydrolysate. By comparing sensitive and tolerant strains, we implicated primary cellular targets of hydrolysate toxins and elucidated the physiological states of cells when exposed to this stress. We also explored the strain-specific effects of gene overexpression to further identify strain-specific responses to hydrolysate stresses and to identify genes that improve hydrolysate tolerance independent of strain background. This study underscores the importance of studying multiple strains to understand the effects of hydrolysate stress and provides a method to find genes that improve tolerance across strain backgrounds.
Collapse
Affiliation(s)
- Maria Sardi
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA Microbiology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nikolay Rovinskiy
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yaoping Zhang
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
26
|
Dickinson Q, Bottoms S, Hinchman L, McIlwain S, Li S, Myers CL, Boone C, Coon JJ, Hebert A, Sato TK, Landick R, Piotrowski JS. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb Cell Fact 2016; 15:17. [PMID: 26790958 PMCID: PMC4721058 DOI: 10.1186/s12934-016-0417-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/08/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. RESULTS We found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effects of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2∆ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. CONCLUSIONS This work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors.
Collapse
Affiliation(s)
- Quinn Dickinson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA.
| | - Scott Bottoms
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA.
| | - Li Hinchman
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA.
| | - Sean McIlwain
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA.
| | - Sheena Li
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| | - Charles Boone
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| | - Joshua J Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA. .,Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA.
| | - Alexander Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA. .,Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA.
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA.
| | - Robert Landick
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA. .,Departments of Biochemistry and Bacteriology, University of Wisconsin, Madison, WI, USA.
| | - Jeff S Piotrowski
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA.
| |
Collapse
|
27
|
Clowers KJ, Heilberger J, Piotrowski JS, Will JL, Gasch AP. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae. Mol Biol Evol 2015; 32:2317-27. [PMID: 25953281 PMCID: PMC4540968 DOI: 10.1093/molbev/msv112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.
Collapse
Affiliation(s)
| | | | | | | | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison Great Lakes Bioenergy Research Center, Madison, WI
| |
Collapse
|
28
|
Serate J, Xie D, Pohlmann E, Donald C, Shabani M, Hinchman L, Higbee A, Mcgee M, La Reau A, Klinger GE, Li S, Myers CL, Boone C, Bates DM, Cavalier D, Eilert D, Oates LG, Sanford G, Sato TK, Dale B, Landick R, Piotrowski J, Ong RG, Zhang Y. Controlling microbial contamination during hydrolysis of AFEX-pretreated corn stover and switchgrass: effects on hydrolysate composition, microbial response and fermentation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:180. [PMID: 26583044 PMCID: PMC4650398 DOI: 10.1186/s13068-015-0356-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/09/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics during the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. RESULTS Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. CONCLUSIONS Our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate, and also showed negligible effects on microbial performance. Although the levels of some of the lignocellulose degradation inhibitors were elevated by autoclaving the feedstocks prior to enzymatic hydrolysis, no significant effects on cell growth, sugar utilization, or ethanol production were seen during bacterial or yeast fermentations in hydrolysates produced using the two different methods.
Collapse
Affiliation(s)
- Jose Serate
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dan Xie
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Edward Pohlmann
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Charles Donald
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Mahboubeh Shabani
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Li Hinchman
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Alan Higbee
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Mick Mcgee
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Alex La Reau
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Grace E. Klinger
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Sheena Li
- />RIKEN Center for Sustainable Resource Science, Wako, Saitama Japan
| | - Chad L. Myers
- />Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Charles Boone
- />Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON Canada
| | - Donna M. Bates
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Dave Cavalier
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Dustin Eilert
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Lawrence G. Oates
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Gregg Sanford
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Trey K. Sato
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Bruce Dale
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Robert Landick
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Jeff Piotrowski
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Rebecca Garlock Ong
- />DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA
| | - Yaoping Zhang
- />DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|