1
|
Samavarchi-Tehrani P, Samson R, Gingras AC. Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches. Mol Cell Proteomics 2020; 19:757-773. [PMID: 32127388 PMCID: PMC7196579 DOI: 10.1074/mcp.r120.001941] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
The study of protein subcellular distribution, their assembly into complexes and the set of proteins with which they interact with is essential to our understanding of fundamental biological processes. Complementary to traditional assays, proximity-dependent biotinylation (PDB) approaches coupled with mass spectrometry (such as BioID or APEX) have emerged as powerful techniques to study proximal protein interactions and the subcellular proteome in the context of living cells and organisms. Since their introduction in 2012, PDB approaches have been used in an increasing number of studies and the enzymes themselves have been subjected to intensive optimization. How these enzymes have been optimized and considerations for their use in proteomics experiments are important questions. Here, we review the structural diversity and mechanisms of the two main classes of PDB enzymes: the biotin protein ligases (BioID) and the peroxidases (APEX). We describe the engineering of these enzymes for PDB and review emerging applications, including the development of PDB for coincidence detection (split-PDB). Lastly, we briefly review enzyme selection and experimental design guidelines and reflect on the labeling chemistries and their implication for data interpretation.
Collapse
Affiliation(s)
| | - Reuben Samson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Ren C, Wen X, Mencius J, Quan S. Selection and screening strategies in directed evolution to improve protein stability. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0288-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractProtein stability is not only fundamental for experimental, industrial, and therapeutic applications, but is also the baseline for evolving novel protein functions. For decades, stability engineering armed with directed evolution has continued its rapid development and inevitably poses challenges. Generally, in directed evolution, establishing a reliable link between a genotype and any interpretable phenotype is more challenging than diversifying genetic libraries. Consequently, we set forth in a small picture to emphasize the screening or selection techniques in protein stability-directed evolution to secure the link. For a more systematic review, two main branches of these techniques, namely cellular or cell-free display and stability biosensors, are expounded with informative examples.
Collapse
|
3
|
Jones K, Kentala K, Beck MW, An W, Lippert AR, Lewis JC, Dickinson BC. Development of a Split Esterase for Protein-Protein Interaction-Dependent Small-Molecule Activation. ACS CENTRAL SCIENCE 2019; 5:1768-1776. [PMID: 31807678 PMCID: PMC6891849 DOI: 10.1021/acscentsci.9b00567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Indexed: 05/21/2023]
Abstract
Split reporters based on fluorescent proteins and luciferases have emerged as valuable tools for measuring interactions in biological systems. Relatedly, biosensors that transduce measured input signals into outputs that influence the host system are key components of engineered gene circuits for synthetic biology applications. While small-molecule-based imaging agents are widely used in biological studies, and small-molecule-based drugs and chemical probes can target a range of biological processes, a general method for generating a target small molecule in a biological system based on a measured input signal is lacking. Here, we develop a proximity-dependent split esterase that selectively unmasks ester-protected small molecules in an interaction-dependent manner. Exploiting the versatility of an ester-protected small-molecule output, we demonstrate fluorescent, chemiluminescent, and pharmacological probe generation, each created by masking key alcohol functional groups on a target small molecule. We show that the split esterase system can be used in combination with ester-masked fluorescent or luminescent probes to measure protein-protein interactions and protein-protein interaction inhibitor engagement. We demonstrate that the esterase-based reporter system is compatible with other commonly used split reporter imaging systems for the simultaneous detection of multiple protein-protein interactions. Finally, we develop a system for selective small-molecule-dependent cell killing by unmasking a cytotoxic molecule using an inducible split esterase. Presaging utility in future synthetic biology-based therapeutic applications, we also show that the system can be used for intercellular cell killing via a bystander effect, where one activated cell unmasks a cytotoxic molecule and kills cells physically adjacent to the activated cells. Collectively, this work illustrates that the split esterase system is a valuable new addition to the split protein toolbox, with particularly exciting potential in synthetic biology applications.
Collapse
Affiliation(s)
- Krysten
A. Jones
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kaitlin Kentala
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Michael W. Beck
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Weiwei An
- Department
of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4),
Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Alexander R. Lippert
- Department
of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4),
Center for Global Health Impact (CGHI), Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Jared C. Lewis
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Bryan C. Dickinson
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
A user-friendly platform for yeast two-hybrid library screening using next generation sequencing. PLoS One 2018; 13:e0201270. [PMID: 30576311 PMCID: PMC6303091 DOI: 10.1371/journal.pone.0201270] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 01/19/2023] Open
Abstract
Yeast two-hybrid (Y2H) is a well-established genetics-based system that uses yeast to selectively display binary protein-protein interactions (PPIs). To meet the current need to unravel complex PPI networks, several adaptations have been made to establish medium- to high-throughput Y2H screening platforms, with several having successfully incorporated the use of the next-generation sequencing (NGS) technology to increase the scale and sensitivity of the method. However, these have been to date mainly restricted to the use of fully annotated custom-made open reading frame (ORF) libraries and subject to complex downstream data processing. Here, a streamlined Y2H library screening strategy, based on integration of Y2H with NGS, called Y2H-seq, was developed, which allows efficient and reliable screening of Y2H cDNA libraries. To generate proof of concept, the method was applied to screen for interaction partners of two key components of the jasmonate signaling machinery in the model plant Arabidopsis thaliana, resulting in the identification of several previously reported as well as hitherto unknown interactors. Our Y2H-seq method offers a user-friendly, specific and sensitive screening method that allows identification of PPIs without prior knowledge of the organism’s ORFs, thereby extending the method to organisms of which the genome has not entirely been annotated yet. The quantitative NGS readout allows to increase genome coverage, thereby overcoming some of the bottlenecks of current Y2H technologies, which will further strengthen the value of the Y2H technology as a discovery platform.
Collapse
|
5
|
Chrétien AÈ, Gagnon-Arsenault I, Dubé AK, Barbeau X, Després PC, Lamothe C, Dion-Côté AM, Lagüe P, Landry CR. Extended Linkers Improve the Detection of Protein-protein Interactions (PPIs) by Dihydrofolate Reductase Protein-fragment Complementation Assay (DHFR PCA) in Living Cells. Mol Cell Proteomics 2017; 17:373-383. [PMID: 29203496 DOI: 10.1074/mcp.tir117.000385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Understanding the function of cellular systems requires describing how proteins assemble with each other into transient and stable complexes and to determine their spatial relationships. Among the tools available to perform these analyses on a large scale is Protein-fragment Complementation Assay based on the dihydrofolate reductase (DHFR PCA). Here we test how longer linkers between the fusion proteins and the reporter fragments affect the performance of this assay. We investigate the architecture of the RNA polymerases, the proteasome and the conserved oligomeric Golgi (COG) complexes in living cells and performed large-scale screens with these extended linkers. We show that longer linkers significantly improve the detection of protein-protein interactions and allow to measure interactions further in space than the standard ones. We identify new interactions, for instance between the retromer complex and proteins related to autophagy and endocytosis. Longer linkers thus contribute an enhanced additional tool to the existing toolsets for the detection and measurements of protein-protein interactions and protein proximity in living cells.
Collapse
Affiliation(s)
- Andrée-Ève Chrétien
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Isabelle Gagnon-Arsenault
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Alexandre K Dubé
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Xavier Barbeau
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Philippe C Després
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Claudine Lamothe
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Anne-Marie Dion-Côté
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie
| | - Patrick Lagüe
- From the ‡Institut de Biologie Intégrative et des Systèmes.,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Christian R Landry
- From the ‡Institut de Biologie Intégrative et des Systèmes; .,§The Quebec Network for Research on Protein Function, Engineering, and Applications.,¶Centre de Recherche en Données Massives de l'Université Laval.,‖Département de biologie.,**Département de biochimie, microbiologie et bioinformatique. Université Laval, Québec, Québec, G1V 0A6, Canada
| |
Collapse
|
6
|
A Tri-part Protein Complementation System Using Antibody-Small Peptide Fusions Enables Homogeneous Immunoassays. Sci Rep 2017; 7:8186. [PMID: 28811487 PMCID: PMC5557857 DOI: 10.1038/s41598-017-07569-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/19/2017] [Indexed: 11/08/2022] Open
Abstract
Protein-fragment complementation is a valuable tool for monitoring protein interactions. In complementation assays, the reporter fragments are directly fused to the interacting proteins, eliminating the possibility of monitoring native interactions. In principle, complementation could be achieved by placing the reporter fragments on antibodies which bind to the proteins of interest, enabling the monitoring of endogenous protein interactions or detection of a single protein in a homogeneous immunoassay. Previous reports have demonstrated proof-of-concept of this approach; however, current complementation systems have not met the practical requirements as suitable fusion partners for antibodies while providing the sensitivity needed for immunoassays. To surmount these challenges, we created a first-in-class, tri-part split luciferase consisting of two 11-residue peptides that are used as the antibody appendages. As an initial proof-of-concept, we used antibody-peptide fusions and found them to be capable of quantifying pg/mL concentrations of soluble or cell-bound HER2, proving this unique complementation system overcomes previous limitations and transforms this approach from merely possible to practical and useful. As shown herein, this dual-peptide system provides a rapid, simple, and sensitive "add-and-read" homogeneous immunoassay platform that can be broadly adapted as an alternative to traditional immunoassays, and in the future should enable complementation to be expanded to monitoring endogenous protein interactions.
Collapse
|
7
|
Chaperone–substrate interactions monitored via a robust TEM-1 β-lactamase fragment complementation assay. Biotechnol Lett 2017; 39:1191-1199. [DOI: 10.1007/s10529-017-2347-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
|
8
|
Finnigan GC, Duvalyan A, Liao EN, Sargsyan A, Thorner J. Detection of protein-protein interactions at the septin collar in Saccharomyces cerevisiae using a tripartite split-GFP system. Mol Biol Cell 2016; 27:2708-25. [PMID: 27385335 PMCID: PMC5007091 DOI: 10.1091/mbc.e16-05-0337] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023] Open
Abstract
A tripartite split-GFP system faithfully reports the order of the subunits in septin hetero-octamers (and thus can serve as a “molecular ruler”), conversely yields little or no false signal even with very highly expressed cytosolic proteins, and detects authentic interactions of other cellular proteins that are bona fide septin-binding proteins. Various methods can provide a readout of the physical interaction between two biomolecules. A recently described tripartite split-GFP system has the potential to report by direct visualization via a fluorescence signal the intimate association of minimally tagged proteins expressed at their endogenous level in their native cellular milieu and can capture transient or weak interactions. Here we document the utility of this tripartite split-GFP system to assess in living cells protein–protein interactions in a dynamic cytoskeletal structure—the septin collar at the yeast bud neck. We show, first, that for septin–septin interactions, this method yields a robust signal whose strength reflects the known spacing between the subunits in septin filaments and thus serves as a “molecular ruler.” Second, the method yields little or no spurious signal even with highly abundant cytosolic proteins readily accessible to the bud neck (including molecular chaperone Hsp82 and glycolytic enzyme Pgk1). Third, using two proteins (Bni5 and Hsl1) that have been shown by other means to bind directly to septins at the bud neck in vivo, we validate that the tripartite split-GFP method yields the same conclusions and further insights about specificity. Finally, we demonstrate the capacity of this approach to uncover additional new information by examining whether three other proteins reported to localize to the bud neck (Nis1, Bud4, and Hof1) are able to interact physically with any of the subunits in the septin collar and, if so, with which ones.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Angela Duvalyan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Elizabeth N Liao
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Aspram Sargsyan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| |
Collapse
|
9
|
Abstract
Specific conformations of signaling proteins can serve as “signals” in signal transduction by being recognized by receptors.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC)
- Brussels
- Belgium
- Vrije Universiteit Brussel
- Brussels
| |
Collapse
|