1
|
Nespolo A, Stefenatti L, Pellarin I, Gambelli A, Rampioni Vinciguerra GL, Karimbayli J, Barozzi S, Orsenigo F, Spizzo R, Nicoloso MS, Segatto I, D’Andrea S, Bartoletti M, Lucia E, Giorda G, Canzonieri V, Puglisi F, Belletti B, Schiappacassi M, Baldassarre G, Sonego M. USP1 deubiquitinates PARP1 to regulate its trapping and PARylation activity. SCIENCE ADVANCES 2024; 10:eadp6567. [PMID: 39536107 PMCID: PMC11559621 DOI: 10.1126/sciadv.adp6567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
PARP inhibitors (PARPi) represent a game-changing treatment for patients with ovarian cancer with tumors deficient for the homologous recombination (HR) pathway treated with platinum (Pt)-based therapy. PARPi exert their cytotoxic effect by both trapping PARP1 on the damaged DNA and by restraining its enzymatic activity (PARylation). How PARP1 is recruited and trapped at the DNA damage sites and how resistance to PARPi could be overcome are still matters of investigation. Here, we described PARP1 as a substrate of the deubiquitinase USP1. At molecular level, USP1 binds PARP1 to remove its K63-linked polyubiquitination and controls PARP1 chromatin trapping and PARylation activity, regulating sensitivity to PARPi. In both Pt/PARPi-sensitive and -resistant cells, USP1/PARP1 combined blockade enhances replicative stress, DNA damage, and cell death. Our work dissected the biological interaction between USP1 and PARP1 and recommended this axis as a promising and powerful therapeutic choice for not only sensitive but also chemoresistant patients with ovarian cancer irrespective of their HR status.
Collapse
Affiliation(s)
- Anna Nespolo
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Linda Stefenatti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Ilenia Pellarin
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Alice Gambelli
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Gian Luca Rampioni Vinciguerra
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Javad Karimbayli
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Sara Barozzi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan (MI), Italy
| | - Fabrizio Orsenigo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan (MI), Italy
| | - Riccardo Spizzo
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Milena S. Nicoloso
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Ilenia Segatto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Sara D’Andrea
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Michele Bartoletti
- Deparment of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Emilio Lucia
- Gynecological Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Giorgio Giorda
- Gynecological Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste (TS), Italy
| | - Fabio Puglisi
- Deparment of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
- Department of Medicine, University of Udine, Udine (UD), Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Monica Schiappacassi
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Maura Sonego
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| |
Collapse
|
2
|
DeCleene NF, Asik E, Sanchez A, Williams CL, Kabotyanski EB, Zhao N, Chatterjee N, Miller KM, Wang YH, Bertuch AA. RPS19 and RPL5, the most commonly mutated genes in Diamond Blackfan anemia, impact DNA double-strand break repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617668. [PMID: 39416207 PMCID: PMC11482920 DOI: 10.1101/2024.10.10.617668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Diamond Blackfan anemia (DBA) is caused by germline heterozygous loss-of-function pathogenic variants (PVs) in ribosomal protein (RP) genes, most commonly RPS19 and RPL5. In addition to red cell aplasia, individuals with DBA are at increased risk of various cancers. Importantly, the mechanism(s) underlying cancer predisposition are poorly understood. We found that DBA patient-derived lymphoblastoid cells had persistent γ-H2AX foci following ionizing radiation (IR) treatment, suggesting DNA double-strand break (DSB) repair defects. RPS19- and RPL5-knocked down (KD) CD34+ cells had delayed repair of IR-induced DSBs, further implicating these RPs in DSB repair. Assessing the impact of RPS19- and RPL5-KD on specific DSB repair pathways, we found RPS19-KD decreased the efficiency of pathways requiring extensive end-resection, whereas RPL5-KD increased end-joining pathways. Additionally, RAD51 was reduced in RPS19- and RPL5-KD and RPS19- and RPL5-mutated DBA cells, whereas RPS19-deficient cells also had a reduction in PARP1 and BRCA2 proteins. RPS19-KD cells had an increase in nuclear RPA2 and a decrease in nuclear RAD51 foci post-IR, reflective of alterations in early, critical steps of homologous recombination. Notably, RPS19 and RPL5 interacted with poly(ADP)-ribose chains noncovalently, were recruited to DSBs in a poly(ADP)-ribose polymerase activity-dependent manner, and interacted with Ku70 and histone H2A. RPL5's recruitment, but not RPS19's, also required p53, suggesting that RPS19 and RPL5 directly participate in DSB repair via different pathways. We propose that defective DSB repair arising from haploinsufficiency of these RPs may underline the cancer predisposition in DBA.
Collapse
Affiliation(s)
- Nicholas F. DeCleene
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Elif Asik
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin
| | - Christopher L. Williams
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | | | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine
| | - Nimrat Chatterjee
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Kyle M. Miller
- Department of Molecular Biosciences, The University of Texas at Austin
| | - Yu-Hsiu Wang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch
| | - Alison A. Bertuch
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| |
Collapse
|
3
|
Salunkhe S, Daley JM, Kaur H, Tomimatsu N, Xue C, Raina VB, Jasper AM, Rogers CM, Li W, Zhou S, Mojidra R, Kwon Y, Fang Q, Ji JH, Badamchi Shabestari A, Fitzgerald O, Dinh H, Mukherjee B, Habib AA, Hromas R, Mazin AV, Wasmuth EV, Olsen SK, Libich DS, Zhou D, Zhao W, Greene EC, Burma S, Sung P. Promotion of DNA end resection by BRCA1-BARD1 in homologous recombination. Nature 2024; 634:482-491. [PMID: 39261729 PMCID: PMC11539920 DOI: 10.1038/s41586-024-07910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
The licensing step of DNA double-strand break repair by homologous recombination entails resection of DNA ends to generate a single-stranded DNA template for assembly of the repair machinery consisting of the RAD51 recombinase and ancillary factors1. DNA end resection is mechanistically intricate and reliant on the tumour suppressor complex BRCA1-BARD1 (ref. 2). Specifically, three distinct nuclease entities-the 5'-3' exonuclease EXO1 and heterodimeric complexes of the DNA endonuclease DNA2, with either the BLM or WRN helicase-act in synergy to execute the end resection process3. A major question concerns whether BRCA1-BARD1 directly regulates end resection. Here, using highly purified protein factors, we provide evidence that BRCA1-BARD1 physically interacts with EXO1, BLM and WRN. Importantly, with reconstituted biochemical systems and a single-molecule analytical tool, we show that BRCA1-BARD1 upregulates the activity of all three resection pathways. We also demonstrate that BRCA1 and BARD1 harbour stand-alone modules that contribute to the overall functionality of BRCA1-BARD1. Moreover, analysis of a BARD1 mutant impaired in DNA binding shows the importance of this BARD1 attribute in end resection, both in vitro and in cells. Thus, BRCA1-BARD1 enhances the efficiency of all three long-range DNA end resection pathways during homologous recombination in human cells.
Collapse
Affiliation(s)
- Sameer Salunkhe
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - James M Daley
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Hardeep Kaur
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chaoyou Xue
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela M Jasper
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wenjing Li
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shuo Zhou
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rahul Mojidra
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Youngho Kwon
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Qingming Fang
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jae-Hoon Ji
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aida Badamchi Shabestari
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - O'Taveon Fitzgerald
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hoang Dinh
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alexander V Mazin
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shaun K Olsen
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David S Libich
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Weixing Zhao
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| | - Sandeep Burma
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Patrick Sung
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Rath SK, Nyamsuren G, Tampe B, Yu DSW, Hulshoff MS, Schlösser D, Maamari S, Zeisberg M, Zeisberg EM. Loss of tet methyl cytosine dioxygenase 3 (TET3) enhances cardiac fibrosis via modulating the DNA damage repair response. Clin Epigenetics 2024; 16:119. [PMID: 39192299 DOI: 10.1186/s13148-024-01719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage. Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, activation of distinct DNA repair mechanism is essential. RESULT In this study, we report that TET3, a DNA demethylating enzyme, which has been shown to be reduced in cardiac fibrosis and to exert antifibrotic effects does so not only through its demethylating activity but also through maintaining genomic integrity by facilitating error-free homologous recombination (HR) repair of DNA damage. Using both in vitro and in vivo models of cardiac fibrosis as well as data from human heart tissue, we demonstrate that the loss of TET3 in cardiac fibroblasts leads to spontaneous DNA damage and in the presence of TGF-β to a shift from HR to the fast but more error-prone non-homologous end joining repair pathway. This shift contributes to increased fibroblast proliferation in a fibrotic environment. In vitro experiments showed TET3's recruitment to H2O2-induced DNA double-strand breaks (DSBs) in mouse cardiac fibroblasts, promoting HR repair. Overexpressing TET3 counteracted TGF-β-induced fibroblast proliferation and restored HR repair efficiency. Extending these findings to human cardiac fibrosis, we confirmed TET3 expression loss in fibrotic hearts and identified a negative correlation between TET3 levels, fibrosis markers, and DNA repair pathway alteration. CONCLUSION Collectively, our findings demonstrate TET3's pivotal role in modulating DDR and fibroblast proliferation in cardiac fibrosis and further highlight TET3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Sandip Kumar Rath
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Gunsmaa Nyamsuren
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - David Sung-Wen Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Melanie S Hulshoff
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Denise Schlösser
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sabine Maamari
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany.
| |
Collapse
|
5
|
Galanti L, Peritore M, Gnügge R, Cannavo E, Heipke J, Palumbieri MD, Steigenberger B, Symington LS, Cejka P, Pfander B. Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination. Nat Commun 2024; 15:2890. [PMID: 38570537 PMCID: PMC10991553 DOI: 10.1038/s41467-024-46951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by several pathways. In eukaryotes, DSB repair pathway choice occurs at the level of DNA end resection and is controlled by the cell cycle. Upon cell cycle-dependent activation, cyclin-dependent kinases (CDKs) phosphorylate resection proteins and thereby stimulate end resection and repair by homologous recombination (HR). However, inability of CDK phospho-mimetic mutants to bypass this cell cycle regulation, suggests that additional cell cycle regulators may be important. Here, we identify Dbf4-dependent kinase (DDK) as a second major cell cycle regulator of DNA end resection. Using inducible genetic and chemical inhibition of DDK in budding yeast and human cells, we show that end resection and HR require activation by DDK. Mechanistically, DDK phosphorylates at least two resection nucleases in budding yeast: the Mre11 activator Sae2, which promotes resection initiation, as well as the Dna2 nuclease, which promotes resection elongation. Notably, synthetic activation of DDK allows limited resection and HR in G1 cells, suggesting that DDK is a key component of DSB repair pathway selection.
Collapse
Affiliation(s)
- Lorenzo Galanti
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
| | - Martina Peritore
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Robert Gnügge
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elda Cannavo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Johannes Heipke
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
| | - Maria Dilia Palumbieri
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany
- Research Group of Proteomics and ADP-Ribosylation Signaling, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Boris Pfander
- Cell Biology, Dortmund Life Science Center (DOLCE), TU Dortmund University, Faculty of Chemistry and Chemical Biology, Dortmund, Germany.
- Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Genome Maintenance Mechanisms in Health and Disease, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.
- Institute for Genome Stability in Aging and Disease, University of Cologne, Medical Faculty, CECAD Research Center, Cologne, Germany.
| |
Collapse
|
6
|
Yang SF, Nelson CB, Wells JK, Fernando M, Lu R, Allen JAM, Malloy L, Lamm N, Murphy VJ, Mackay JP, Deans AJ, Cesare AJ, Sobinoff AP, Pickett HA. ZNF827 is a single-stranded DNA binding protein that regulates the ATR-CHK1 DNA damage response pathway. Nat Commun 2024; 15:2210. [PMID: 38472229 PMCID: PMC10933417 DOI: 10.1038/s41467-024-46578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.
Collapse
Affiliation(s)
- Sile F Yang
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Jadon K Wells
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Madushan Fernando
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Lisa Malloy
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Noa Lamm
- Nuclear Dynamics Group, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Vincent J Murphy
- Genome Stability Unit, St Vincent's Institute, Fitzroy, VIC, 3065, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew J Deans
- Genome Stability Unit, St Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
7
|
Locke AJ, Abou Farraj R, Tran C, Zeinali E, Mashayekhi F, Ali JYH, Glover JNM, Ismail IH. The role of RNF138 in DNA end resection is regulated by ubiquitylation and CDK phosphorylation. J Biol Chem 2024; 300:105709. [PMID: 38309501 PMCID: PMC10910129 DOI: 10.1016/j.jbc.2024.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
Double-strand breaks (DSBs) are DNA lesions that pose a significant threat to genomic stability. The repair of DSBs by the homologous recombination (HR) pathway is preceded by DNA end resection, the 5' to 3' nucleolytic degradation of DNA away from the DSB. We and others previously identified a role for RNF138, a really interesting new gene finger E3 ubiquitin ligase, in stimulating DNA end resection and HR. Yet, little is known about how RNF138's function is regulated in the context of DSB repair. Here, we show that RNF138 is phosphorylated at residue T27 by cyclin-dependent kinase (CDK) activity during the S and G2 phases of the cell cycle. We also observe that RNF138 is ubiquitylated constitutively, with ubiquitylation occurring in part on residue K158 and rising during the S/G2 phases. Interestingly, RNF138 ubiquitylation decreases upon genotoxic stress. By mutating RNF138 at residues T27, K158, and the previously identified S124 ataxia telangiectasia mutated phosphorylation site (Han et al., 2016, ref. 22), we find that post-translational modifications at all three positions mediate DSB repair. Cells expressing the T27A, K158R, and S124A variants of RNF138 are impaired in DNA end resection, HR activity, and are more sensitive to ionizing radiation compared to those expressing wildtype RNF138. Our findings shed more light on how RNF138 activity is controlled by the cell during HR.
Collapse
Affiliation(s)
- Andrew J Locke
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rabih Abou Farraj
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Tran
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Elham Zeinali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jana Yasser Hafez Ali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
8
|
Mórocz M, Qorri E, Pekker E, Tick G, Haracska L. Exploring RAD18-dependent replication of damaged DNA and discontinuities: A collection of advanced tools. J Biotechnol 2024; 380:1-19. [PMID: 38072328 DOI: 10.1016/j.jbiotec.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
DNA damage tolerance (DDT) pathways mitigate the effects of DNA damage during replication by rescuing the replication fork stalled at a DNA lesion or other barriers and also repair discontinuities left in the newly replicated DNA. From yeast to mammalian cells, RAD18-regulated translesion synthesis (TLS) and template switching (TS) represent the dominant pathways of DDT. Monoubiquitylation of the polymerase sliding clamp PCNA by HRAD6A-B/RAD18, an E2/E3 protein pair, enables the recruitment of specialized TLS polymerases that can insert nucleotides opposite damaged template bases. Alternatively, the subsequent polyubiquitylation of monoubiquitin-PCNA by Ubc13-Mms2 (E2) and HLTF or SHPRH (E3) can lead to the switching of the synthesis from the damaged template to the undamaged newly synthesized sister strand to facilitate synthesis past the lesion. When immediate TLS or TS cannot occur, gaps may remain in the newly synthesized strand, partly due to the repriming activity of the PRIMPOL primase, which can be filled during the later phases of the cell cycle. The first part of this review will summarize the current knowledge about RAD18-dependent DDT pathways, while the second part will offer a molecular toolkit for the identification and characterization of the cellular functions of a DDT protein. In particular, we will focus on advanced techniques that can reveal single-stranded and double-stranded DNA gaps and their repair at the single-cell level as well as monitor the progression of single replication forks, such as the specific versions of the DNA fiber and comet assays. This collection of methods may serve as a powerful molecular toolkit to monitor the metabolism of gaps, detect the contribution of relevant pathways and molecular players, as well as characterize the effectiveness of potential inhibitors.
Collapse
Affiliation(s)
- Mónika Mórocz
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Erda Qorri
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged H-6720, Hungary.
| | - Emese Pekker
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary.
| | - Gabriella Tick
- Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Lajos Haracska
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117 Budapest, Hungary.
| |
Collapse
|
9
|
Vassel FM, Laverty DJ, Bian K, Piett CG, Hemann MT, Walker GC, Nagel ZD. REV7 Monomer Is Unable to Participate in Double Strand Break Repair and Translesion Synthesis but Suppresses Mitotic Errors. Int J Mol Sci 2023; 24:15799. [PMID: 37958783 PMCID: PMC10649693 DOI: 10.3390/ijms242115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Rev7 is a regulatory protein with roles in translesion synthesis (TLS), double strand break (DSB) repair, replication fork protection, and cell cycle regulation. Rev7 forms a homodimer in vitro using its HORMA (Hop, Rev7, Mad2) domain; however, the functional importance of Rev7 dimerization has been incompletely understood. We analyzed the functional properties of cells expressing either wild-type mouse Rev7 or Rev7K44A/R124A/A135D, a mutant that cannot dimerize. The expression of wild-type Rev7, but not the mutant, rescued the sensitivity of Rev7-/- cells to X-rays and several alkylating agents and reversed the olaparib resistance phenotype of Rev7-/- cells. Using a novel fluorescent host-cell reactivation assay, we found that Rev7K44A/R124A/A135D is unable to promote gap-filling TLS opposite an abasic site analog. The Rev7 dimerization interface is also required for shieldin function, as both Rev7-/- cells and Rev7-/- cells expressing Rev7K44A/R124A/A135D exhibit decreased proficiency in rejoining some types of double strand breaks, as well as increased homologous recombination. Interestingly, Rev7K44A/R124A/A135D retains some function in cell cycle regulation, as it maintains an interaction with Ras-related nuclear protein (Ran) and partially rescues the formation of micronuclei. The mutant Rev7 also rescues the G2/M accumulation observed in Rev7-/- cells but does not affect progression through mitosis following nocodazole release. We conclude that while Rev7 dimerization is required for its roles in TLS, DSB repair, and regulation of the anaphase promoting complex, dimerization is at least partially dispensable for promoting mitotic spindle assembly through its interaction with Ran.
Collapse
Affiliation(s)
- Faye M. Vassel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Daniel J. Laverty
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Ke Bian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Cortt G. Piett
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Michael T. Hemann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Zachary D. Nagel
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
10
|
Wang M, Li W, Tomimatsu N, Yu CH, Ji JH, Alejo S, Witus SR, Alimbetov D, Fitzgerald O, Wu B, Wang Q, Huang Y, Gan Y, Dong F, Kwon Y, Sareddy GR, Curiel TJ, Habib AA, Hromas R, Dos Santos Passos C, Yao T, Ivanov DN, Brzovic PS, Burma S, Klevit RE, Zhao W. Crucial roles of the BRCA1-BARD1 E3 ubiquitin ligase activity in homology-directed DNA repair. Mol Cell 2023; 83:3679-3691.e8. [PMID: 37797621 PMCID: PMC10591799 DOI: 10.1016/j.molcel.2023.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023]
Abstract
The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones. Cells expressing either of these BRCA1-BARD1 separation-of-function alleles are hypersensitive to DNA-damaging agents. Furthermore, we demonstrate that BRCA1-BARD1 ligase is not only required for DNA resection during homology-directed repair (HDR) but also contributes to later stages for HDR completion. Altogether, our findings reveal crucial, previously unrecognized roles of BRCA1-BARD1 ligase activity in genome repair via HDR, settle prior controversies regarding BRCA1-BARD1 ligase functions, and catalyze new efforts to uncover substrates related to tumor suppression.
Collapse
Affiliation(s)
- Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Corey H Yu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Salvador Alejo
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Samuel R Witus
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Dauren Alimbetov
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - O'Taveon Fitzgerald
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bo Wu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qijing Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yaqi Gan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Felix Dong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gangadhara R Sareddy
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tyler J Curiel
- Geisel School of Medicine at Dartmouth and Department of Medicine, Dartmouth Health, Lebanon, NH 03765, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Hromas
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Carolina Dos Santos Passos
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dmitri N Ivanov
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Xie J, Wang S, Zhong Y, Gao M, Tian X, Zhang L, Pan D, Qin Q, Wu B, Lan K, Sun ZJ, Zhang J. Oncolytic herpes simplex virus armed with a bacterial GBP1 degrader improves antitumor activity. Mol Ther Oncolytics 2023; 29:61-76. [PMID: 37223114 PMCID: PMC10200819 DOI: 10.1016/j.omto.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Abstract
Oncolytic viruses (OVs) encoding various transgenes are being evaluated for cancer immunotherapy. Diverse factors such as cytokines, immune checkpoint inhibitors, tumor-associated antigens, and T cell engagers have been exploited as transgenes. These modifications are primarily aimed to reverse the immunosuppressive tumor microenvironment. By contrast, antiviral restriction factors that inhibit the replication of OVs and result in suboptimal oncolytic activity have received far less attention. Here, we report that guanylate-binding protein 1 (GBP1) is potently induced during HSV-1 infection and restricts HSV-1 replication. Mechanistically, GBP1 remodels cytoskeletal organization to impede nuclear entry of HSV-1 genome. Previous studies have established that IpaH9.8, a bacterial E3 ubiquitin ligase, targets GBPs for proteasomal degradation. We therefore engineered an oncolytic HSV-1 to express IpaH9.8 and found that the modified OV effectively antagonized GBP1, replicated to a higher titer in vitro and showed superior antitumor activity in vivo. Our study features a strategy for improving the replication of OVs via targeting a restriction factor and achieving promising therapeutic efficacy.
Collapse
Affiliation(s)
- Jun Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Shaowei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yunhong Zhong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Ming Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Xuezhang Tian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Liting Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Dongli Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bing Wu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Ke Lan
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Junjie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
12
|
Zeng X, Zhao F, Cui G, Zhang Y, Deshpande RA, Chen Y, Deng M, Kloeber JA, Shi Y, Zhou Q, Zhang C, Hou J, Kim W, Tu X, Yan Y, Xu Z, Chen L, Gao H, Guo G, Liu J, Zhu Q, Cao Y, Huang J, Wu Z, Zhu S, Yin P, Luo K, Mer G, Paull TT, Yuan J, Tao K, Lou Z. METTL16 antagonizes MRE11-mediated DNA end resection and confers synthetic lethality to PARP inhibition in pancreatic ductal adenocarcinoma. NATURE CANCER 2022; 3:1088-1104. [PMID: 36138131 DOI: 10.1038/s43018-022-00429-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Characterization of genetic alterations will improve our understanding and therapies for this disease. Here, we report that PDAC with elevated expression of METTL16, one of the 'writers' of RNA N6-methyladenosine modification, may benefit from poly-(ADP-ribose)-polymerase inhibitor (PARPi) treatment. Mechanistically, METTL16 interacts with MRE11 through RNA and this interaction inhibits MRE11's exonuclease activity in a methyltransferase-independent manner, thereby repressing DNA end resection. Upon DNA damage, ATM phosphorylates METTL16 resulting in a conformational change and autoinhibition of its RNA binding. This dissociates the METTL16-RNA-MRE11 complex and releases inhibition of MRE11. Concordantly, PDAC cells with high METTL16 expression show increased sensitivity to PARPi, especially when combined with gemcitabine. Thus, our findings reveal a role for METTL16 in homologous recombination repair and suggest that a combination of PARPi with gemcitabine could be an effective treatment strategy for PDAC with elevated METTL16 expression.
Collapse
Affiliation(s)
- Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yong Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yuping Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Yu Shi
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Chao Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jing Hou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wootae Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Republic of Korea
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yuanliang Yan
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lifeng Chen
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaqi Liu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yueyu Cao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Jian Yuan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China.
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Vergara X, Schep R, Medema RH, van Steensel B. From fluorescent foci to sequence: Illuminating DNA double strand break repair by high-throughput sequencing technologies. DNA Repair (Amst) 2022; 118:103388. [PMID: 36037787 DOI: 10.1016/j.dnarep.2022.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Technologies to study DNA double-strand break (DSB) repair have traditionally mostly relied on fluorescence read-outs, either by microscopy or flow cytometry. The advent of high throughput sequencing (HTS) has created fundamentally new opportunities to study the mechanisms underlying DSB repair. Here, we review the suite of HTS-based assays that are used to study three different aspects of DNA repair: detection of broken ends, protein recruitment and pathway usage. We highlight new opportunities that HTS technology offers towards a better understanding of the DSB repair process.
Collapse
Affiliation(s)
- Xabier Vergara
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Ruben Schep
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands.
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands; Department of Cell Biology, Erasmus University Medical Centre, the Netherlands.
| |
Collapse
|
14
|
Chen BR, Tyler JK, Sleckman BP. A Flow Cytometry-Based Method for Analyzing DNA End Resection in G 0- and G 1-Phase Mammalian Cells. Bio Protoc 2022; 12:e4413. [PMID: 35813018 PMCID: PMC9183964 DOI: 10.21769/bioprotoc.4413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/29/2022] Open
Abstract
DNA double strand breaks (DSBs) constantly arise in cells during normal cellular processes or upon exposure to genotoxic agents, and are repaired mostly by homologous recombination (HR) and non-homologous end joining (NHEJ). One key determinant of DNA DSB repair pathway choice is the processing of broken DNA ends to generate single strand DNA (ssDNA) overhangs, a process termed DNA resection. The generation of ssDNA overhangs commits DSB repair through HR and inhibits NHEJ. Therefore, DNA resection must be carefully regulated to avoid mis-repaired or persistent DSBs. Accordingly, many approaches have been developed to monitor ssDNA generation in cells to investigate genes and pathways that regulate DNA resection. Here we describe a flow cytometric approach measuring the levels of replication protein A (RPA) complex, a high affinity ssDNA binding complex composed of three subunits (RPA70, RPA32, and RPA14 in mammals), on chromatin after DNA DSB induction to assay DNA resection. This flow cytometric assay requires only conventional flow cytometers and can easily be scaled up to analyze a large number of samples or even for genetic screens of pooled mutants on a genome-wide scale. We adopt this assay in G0- and G1- phase synchronized cells where DNA resection needs to be kept in check to allow normal NHEJ.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
,
*For correspondence:
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Barry P. Sleckman
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
A Proximity Ligation Method to Detect Proteins Bound to Single-Stranded DNA after DNA End Resection at DNA Double-Strand Breaks. Methods Protoc 2021; 5:mps5010003. [PMID: 35076555 PMCID: PMC8788478 DOI: 10.3390/mps5010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
After a DNA double-strand break, cells utilize either non-homologous end joining or homologous recombination to repair the broken DNA ends. Homologous recombination requires extensive nucleolytic processing of one of the DNA strands, resulting in long stretches of 3′ single-strand DNA overhangs. Typically, single-stranded DNA is measured using immunofluorescence microscopy to image the foci of replication protein A, a single-stranded DNA-binding protein. Microscopy analysis of bromodeoxyuridine foci under nondenaturing conditions has also been used to measure single-stranded DNA. Here, we describe a proximity ligation assay which uses genome-wide bromodeoxyuridine incorporation to label single-stranded DNA in order to measure the association of a protein of interest with single-stranded DNA. This method is advantageous over traditional foci analysis because it is more direct and specific than traditional foci co-localization microscopy methods, uses only one color channel, and can reveal protein-single-stranded DNA interactions that are rare and potentially undetectable using traditional microscopy methods. We show here the association of replication protein A and bromodeoxyuridine as proof-of-concept.
Collapse
|
16
|
Kilgas S, Kiltie AE, Ramadan K. Immunofluorescence microscopy-based detection of ssDNA foci by BrdU in mammalian cells. STAR Protoc 2021; 2:100978. [PMID: 34888531 PMCID: PMC8634038 DOI: 10.1016/j.xpro.2021.100978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA end resection converts broken ends of double-stranded DNA (dsDNA) to 3'-single-stranded DNA (3'-ssDNA). The extent of resection regulates DNA double-strand break (DSB) repair pathway choice and thereby genomic stability. Here, we characterize an optimized immunofluorescence (IF) microscopy-based protocol for measuring ssDNA in mammalian cells by labeling genomic DNA with 5-bromo-2'-deoxyuridine (BrdU). BrdU foci can be detected under non-denaturing conditions by anti-BrdU antibody, providing an accurate and reliable readout of DNA end resection in most mammalian cell lines. For complete details on the use and execution of this protocol, please refer to Kilgas et al. (2021).
Collapse
Affiliation(s)
- Susan Kilgas
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anne E. Kiltie
- Rowett Institute, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
17
|
The large nonstructural protein (NS1) of the human bocavirus 1 (HBoV1) directly interacts with Ku70, which plays an important role in virus replication in human airway epithelia. J Virol 2021; 96:e0184021. [PMID: 34878919 PMCID: PMC8865542 DOI: 10.1128/jvi.01840-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human bocavirus 1 (HBoV1), an autonomous human parvovirus, causes acute respiratory tract infections in young children. HBoV1 infects well-differentiated (polarized) human airway epithelium cultured at an air-liquid interface (HAE-ALI). HBoV1 expresses a large nonstructural protein, NS1, that is essential for viral DNA replication. HBoV1 infection of polarized human airway epithelial cells induces a DNA damage response (DDR) that is critical to viral DNA replication involving DNA repair with error-free Y-family DNA polymerases. HBoV1 NS1 or the isoform NS1-70 per se induces a DDR. In this study, using the second-generation proximity-dependent biotin identification (BioID2) approach, we identified that Ku70 is associated with the NS1-BioID2 pulldown complex through a direct interaction with NS1. Biolayer interferometry (BLI) assay determined a high binding affinity of NS1 with Ku70, which has an equilibrium dissociation constant (KD) value of 0.16 μM and processes the strongest interaction at the C-terminal domain. The association of Ku70 with NS1 was also revealed during HBoV1 infection of HAE-ALI. Knockdown of Ku70 and overexpression of the C-terminal domain of Ku70 significantly decreased HBoV1 replication in HAE-ALI. Thus, our study provides, for the first time, a direct interaction of parvovirus large nonstructural protein NS1 with Ku70. IMPORTANCE Parvovirus infection induces a DNA damage response (DDR) that plays a pivotal role in viral DNA replication. The DDR includes activation of ATM (ataxia telangiectasia mutated), ATR (ATM- and RAD3-related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit). The large nonstructural protein (NS1) often plays a role in the induction of DDR; however, how the DDR is induced during parvovirus infection or simply by the NS1 is not well studied. Activation of DNA-PKcs has been shown as one of the key DDR pathways in DNA replication of HBoV1. We identified that HBoV1 NS1 directly interacts with Ku70, but not Ku80, of the Ku70/Ku80 heterodimer at high affinity. This interaction is also important for HBoV1 replication in HAE-ALI. We propose that the interaction of NS1 with Ku70 recruits the Ku70/Ku80 complex to the viral DNA replication center, which activates DNA-PKcs and facilitates viral DNA replication.
Collapse
|
18
|
Liu B, Liu H, Ma Y, Ding Q, Zhang M, Liu X, Liu M. EGFR-mutated stage IV non-small cell lung cancer: What is the role of radiotherapy combined with TKI? Cancer Med 2021; 10:6167-6188. [PMID: 34374490 PMCID: PMC8446557 DOI: 10.1002/cam4.4192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death globally and poses a considerable threat to public health. Asia has the highest prevalence of epidermal growth factor receptor (EGFR) mutations in patients with non-small cell lung cancer (NSCLC). Despite the reasonable response and prolonged survival associated with EGFR-tyrosine kinase inhibitor (TKI) therapy, the acquisition of resistance to TKIs remains a major challenge. Additionally, patients with EGFR mutations are at a substantially higher risk of brain metastasis compared with those harboring wild-type EGFR. The role of radiotherapy (RT) in EGFR-mutated (EGFRm) stage IV NSCLC requires clarification, especially with the advent of next-generation TKIs, which are more potent and exhibit greater central nervous system activity. In particular, the feasible application of RT, including the timing, site, dose, fraction, and combination with TKI, merits further investigation. This review focuses on these key issues, and provides a flow diagram with proposed treatment options for metastatic EGFRm NSCLC, aiming to provide guidance for clinical practice.
Collapse
Affiliation(s)
- Bailong Liu
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hui Liu
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Yunfei Ma
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Qiuhui Ding
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Min Zhang
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Xinliang Liu
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Min Liu
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
19
|
Ekstrom TL, Pathoulas NM, Huehls AM, Kanakkanthara A, Karnitz LM. VLX600 Disrupts Homologous Recombination and Synergizes with PARP Inhibitors and Cisplatin by Inhibiting Histone Lysine Demethylases. Mol Cancer Ther 2021; 20:1561-1571. [PMID: 34224364 DOI: 10.1158/1535-7163.mct-20-1099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/23/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Tumors with defective homologous recombination (HR) DNA repair are more sensitive to chemotherapies that induce lesions repaired by HR as well as PARP inhibitors (PARPis). However, these therapies have limited activity in HR-proficient cells. Accordingly, agents that disrupt HR may be a means to augment the activities of these therapies in HR-proficient tumors. Here we show that VLX600, a small molecule that has been in a phase I clinical trial, disrupts HR and synergizes with PARPis and platinum compounds in ovarian cancer cells. We further found that VLX600 and other iron chelators disrupt HR, in part, by inhibiting iron-dependent histone lysine demethylases (KDM) family members, thus blocking recruitment of HR repair proteins, including RAD51, to double-strand DNA breaks. Collectively, these findings suggest that pharmacologically targeting KDM family members with VLX600 may be a potential novel strategy to therapeutically induce HR defects in ovarian cancers and correspondingly sensitize them to platinum agents and PARPis, two standard-of-care therapies for ovarian cancer.
Collapse
Affiliation(s)
- Thomas L Ekstrom
- Division of Oncology Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Nicholas M Pathoulas
- Division of Oncology Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Amelia M Huehls
- Division of Oncology Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Arun Kanakkanthara
- Division of Oncology Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Larry M Karnitz
- Division of Oncology Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
Yano K, Takahashi RU, Shiotani B, Abe J, Shidooka T, Sudo Y, Yamamoto Y, Kan S, Sakagami H, Tahara H. PRPF19 regulates p53-dependent cellular senescence by modulating alternative splicing of MDM4 mRNA. J Biol Chem 2021; 297:100882. [PMID: 34144037 PMCID: PMC8274299 DOI: 10.1016/j.jbc.2021.100882] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/17/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Alteration of RNA splicing is a hallmark of cellular senescence, which is associated with age-related disease and cancer development. However, the roles of splicing factors in cellular senescence are not fully understood. In this study, we identified the splicing factor PRPF19 as a critical regulator of cellular senescence in normal human diploid fibroblasts. PRPF19 was downregulated during replicative senescence, and PRPF19 knockdown prematurely induced senescence-like cell cycle arrest through the p53–p21 pathway. RNA-sequencing analysis revealed that PRPF19 knockdown caused a switch of the MDM4 splicing isoform from stable full-length MDM4-FL to unstable MDM4-S lacking exon 6. We also found that PRPF19 regulates MDM4 splicing by promoting the physical interaction of other splicing factors, PRPF3 and PRPF8, which are key components of the core spliceosome, U4/U6.U5 tri-snRNP. Given that MDM4 is a major negative regulator of p53, our findings imply that PRPF19 downregulation inhibits MDM4-mediated p53 inactivation, resulting in induction of cellular senescence. Thus, PRPF19 plays an important role in the induction of p53-dependent cellular senescence.
Collapse
Affiliation(s)
- Kimiyoshi Yano
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Bunsyo Shiotani
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Junko Abe
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoki Shidooka
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Sudo
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Shisei Kan
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Sakagami
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
21
|
Zhou Q, Howard ME, Tu X, Zhu Q, Denbeigh JM, Remmes NB, Herman MG, Beltran CJ, Yuan J, Greipp PT, Boughey JC, Wang L, Johnson N, Goetz MP, Sarkaria JN, Lou Z, Mutter RW. Inhibition of ATM Induces Hypersensitivity to Proton Irradiation by Upregulating Toxic End Joining. Cancer Res 2021; 81:3333-3346. [PMID: 33597272 PMCID: PMC8260463 DOI: 10.1158/0008-5472.can-20-2960] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
Proton Bragg peak irradiation has a higher ionizing density than conventional photon irradiation or the entrance of the proton beam profile. Whether targeting the DNA damage response (DDR) could enhance vulnerability to the distinct pattern of damage induced by proton Bragg peak irradiation is currently unknown. Here, we performed genetic or pharmacologic manipulation of key DDR elements and evaluated DNA damage signaling, DNA repair, and tumor control in cell lines and xenografts treated with the same physical dose across a radiotherapy linear energy transfer spectrum. Radiotherapy consisted of 6 MV photons and the entrance beam or Bragg peak of a 76.8 MeV spot scanning proton beam. More complex DNA double-strand breaks (DSB) induced by Bragg peak proton irradiation preferentially underwent resection and engaged homologous recombination (HR) machinery. Unexpectedly, the ataxia-telangiectasia mutated (ATM) inhibitor, AZD0156, but not an inhibitor of ATM and Rad3-related, rendered cells hypersensitive to more densely ionizing proton Bragg peak irradiation. ATM inhibition blocked resection and shunted more DSBs to processing by toxic ligation through nonhomologous end-joining, whereas loss of DNA ligation via XRCC4 or Lig4 knockdown rescued resection and abolished the enhanced Bragg peak cell killing. Proton Bragg peak monotherapy selectively sensitized cell lines and tumor xenografts with inherent HR defects, and the repair defect induced by ATM inhibitor coadministration showed enhanced efficacy in HR-proficient models. In summary, inherent defects in HR or administration of an ATM inhibitor in HR-proficient tumors selectively enhances the relative biological effectiveness of proton Bragg peak irradiation. SIGNIFICANCE: Coadministration of an ATM inhibitor rewires DNA repair machinery to render cancer cells uniquely hypersensitive to DNA damage induced by the proton Bragg peak, which is characterized by higher density ionization.See related commentary by Nickoloff, p. 3156.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Xinyi Tu
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Janet M Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jian Yuan
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, Minnesota
| | - Judy C Boughey
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Matthew P Goetz
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
22
|
Gupta P, Saha B, Chattopadhyay S, Patro BS. Pharmacological targeting of differential DNA repair, radio-sensitizes WRN-deficient cancer cells in vitro and in vivo. Biochem Pharmacol 2021; 186:114450. [PMID: 33571504 DOI: 10.1016/j.bcp.2021.114450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
Werner (WRN) expression is epigenetically downregulated in various tumors. It is imperative to understand differential repair process in WRN-proficient and WRN-deficient cancers to find pharmacological targets for radio-sensitization of WRN-deficient cancer. In the current investigation, we showed that pharmacological inhibition of CHK1 mediated homologous recombination repair (HRR), but not non-homologous end joining (NHEJ) repair, can causes hyper-radiosensitization of WRN-deficient cancers. This was confirmed in cancer cell lines of different tissue origin (osteosarcoma, colon adenocarcinoma and melanoma) with WRN silencing and overexpression. We established that WRN-depleted cells are dependent on a critical but compromised CHK1-mediated HRR-pathway for repairing ionizing radiation (IR) induced DSBs for their survival. Mechanistically, we unraveled a new finding that the MRE11, CTIP and WRN proteins are largely responsible for resections of late and persistent DSBs. In response to IR-treatment, MRE11 and CTIP-positively and WRN-negatively regulate p38-MAPK reactivation in a CHK1-dependent manner. A degradation resistant WRN protein, mutated at serine 1141, abrogates p38-MAPK activation. We also showed that CHK1-p38-MAPK axis plays important role in RAD51 mediated HRR in WRN-silenced cells. Like CHK1 inhibition, pharmacological-inhibition of p38-MAPK also hyper-radiosensitizes WRN-depleted cells by targeting HR-pathway. Combination treatment of CHK1-inhibitor (currently under various clinical trials) and IR exhibited a strong synergy against WRN-deficient melanoma tumor in vivo. Taken together, our findings suggest that pharmacological targeting of CHK1-p38-MAPK mediated HRR is an attractive strategy for enhancing therapeutic response of radiation treatment of cancer.
Collapse
Affiliation(s)
- Pooja Gupta
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bhaskar Saha
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Subrata Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
23
|
Sviderskiy VO, Blumenberg L, Gorodetsky E, Karakousi TR, Hirsh N, Alvarez SW, Terzi EM, Kaparos E, Whiten GC, Ssebyala S, Tonzi P, Mir H, Neel BG, Huang TT, Adams S, Ruggles KV, Possemato R. Hyperactive CDK2 Activity in Basal-like Breast Cancer Imposes a Genome Integrity Liability that Can Be Exploited by Targeting DNA Polymerase ε. Mol Cell 2020; 80:682-698.e7. [PMID: 33152268 PMCID: PMC7687292 DOI: 10.1016/j.molcel.2020.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Knowledge of fundamental differences between breast cancer subtypes has driven therapeutic advances; however, basal-like breast cancer (BLBC) remains clinically intractable. Because BLBC exhibits alterations in DNA repair enzymes and cell-cycle checkpoints, elucidation of factors enabling the genomic instability present in this subtype has the potential to reveal novel anti-cancer strategies. Here, we demonstrate that BLBC is especially sensitive to suppression of iron-sulfur cluster (ISC) biosynthesis and identify DNA polymerase epsilon (POLE) as an ISC-containing protein that underlies this phenotype. In BLBC cells, POLE suppression leads to replication fork stalling, DNA damage, and a senescence-like state or cell death. In contrast, luminal breast cancer and non-transformed mammary cells maintain viability upon POLE suppression but become dependent upon an ATR/CHK1/CDC25A/CDK2 DNA damage response axis. We find that CDK1/2 targets exhibit hyperphosphorylation selectively in BLBC tumors, indicating that CDK2 hyperactivity is a genome integrity vulnerability exploitable by targeting POLE.
Collapse
Affiliation(s)
- Vladislav O Sviderskiy
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Lili Blumenberg
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Elizabeth Gorodetsky
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Triantafyllia R Karakousi
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Nicole Hirsh
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Samantha W Alvarez
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Erdem M Terzi
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Efiyenia Kaparos
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Gabrielle C Whiten
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Shakirah Ssebyala
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Peter Tonzi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Hannan Mir
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Benjamin G Neel
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Sylvia Adams
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Richard Possemato
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
24
|
Awate S, Sommers JA, Datta A, Nayak S, Bellani MA, Yang O, Dunn CA, Nicolae CM, Moldovan GL, Seidman MM, Cantor SB, Brosh RM. FANCJ compensates for RAP80 deficiency and suppresses genomic instability induced by interstrand cross-links. Nucleic Acids Res 2020; 48:9161-9180. [PMID: 32797166 DOI: 10.1093/nar/gkaa660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ's catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.
Collapse
Affiliation(s)
- Sanket Awate
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sumeet Nayak
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Olivia Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher A Dunn
- Flow Cytometry Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
25
|
Hays E, Nettleton E, Carter C, Morales M, Vo L, Passo M, Vélez-Cruz R. The SWI/SNF ATPase BRG1 stimulates DNA end resection and homologous recombination by reducing nucleosome density at DNA double strand breaks and by promoting the recruitment of the CtIP nuclease. Cell Cycle 2020; 19:3096-3114. [PMID: 33044911 PMCID: PMC7714457 DOI: 10.1080/15384101.2020.1831256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA double strand breaks (DSBs) are among the most toxic DNA lesions and can be repaired accurately through homologous recombination (HR). HR requires processing of the DNA ends by nucleases (DNA end resection) in order to generate the required single-stranded DNA (ssDNA) regions. The SWI/SNF chromatin remodelers are 10–15 subunit complexes that contain one ATPase (BRG1 or BRM). Multiple subunits of these complexes have recently been identified as a novel family of tumor suppressors. These complexes are capable of remodeling chromatin by pushing nucleosomes along the DNA. More recent studies have identified these chromatin remodelers as important factors in DNA repair. Using the DR-U2OS reporter system, we show that the down regulation of BRG1 significantly reduces HR efficiency, while BRM has a minor effect. Inactivation of BRG1 impairs DSB repair and results in a defect in DNA end resection, as measured by the amount of BrdU-containing ssDNA generated after DNA damage. Inactivation of BRG1 also impairs the activation of the ATR kinase, reduces the levels of chromatin-bound RPA, and reduces the number of RPA and RAD51 foci after DNA damage. This defect in DNA end resection is explained by the defective recruitment of GFP-CtIP to laser-induced DSBs in the absence of BRG1. Importantly, we show that BRG1 reduces nucleosome density at DSBs. Finally, inactivation of BRG1 renders cells sensitive to anti-cancer drugs that induce DSBs. This study identifies BRG1 as an important factor for HR, which suggests that BRG1-mutated cancers have a DNA repair vulnerability that can be exploited therapeutically.
Collapse
Affiliation(s)
- Emily Hays
- Department of Biochemistry and Molecular Genetics, Midwestern University , Downers Grove, IL, USA.,College of Graduate Studies, Midwestern University , Downers Grove, IL, USA
| | - Elizabeth Nettleton
- Chicago College of Osteopathic Medicine, Midwestern University , Downers Grove, IL, USA
| | - Caitlin Carter
- Chicago College of Osteopathic Medicine, Midwestern University , Downers Grove, IL, USA
| | - Mariangel Morales
- College of Graduate Studies, Midwestern University , Downers Grove, IL, USA.,Biomedical Sciences Program, Midwestern University , Downers Grove, IL, USA
| | - Lynn Vo
- Chicago College of Osteopathic Medicine, Midwestern University , Downers Grove, IL, USA
| | - Max Passo
- College of Graduate Studies, Midwestern University , Downers Grove, IL, USA.,Biomedical Sciences Program, Midwestern University , Downers Grove, IL, USA
| | - Renier Vélez-Cruz
- Department of Biochemistry and Molecular Genetics, Midwestern University , Downers Grove, IL, USA.,College of Graduate Studies, Midwestern University , Downers Grove, IL, USA.,Chicago College of Optometry, Midwestern University , Downers Grove, IL, USA
| |
Collapse
|
26
|
Volcic M, Sparrer KMJ, Koepke L, Hotter D, Sauter D, Stürzel CM, Scherer M, Stamminger T, Hofmann TG, Arhel NJ, Wiesmüller L, Kirchhoff F. Vpu modulates DNA repair to suppress innate sensing and hyper-integration of HIV-1. Nat Microbiol 2020; 5:1247-1261. [PMID: 32690953 PMCID: PMC7616938 DOI: 10.1038/s41564-020-0753-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
To avoid innate sensing and immune control, human immunodeficiency virus type 1 (HIV-1) has to prevent the accumulation of viral complementary DNA species. Here, we show that the late HIV-1 accessory protein Vpu hijacks DNA repair mechanisms to promote degradation of nuclear viral cDNA in cells that are already productively infected. Vpu achieves this by interacting with RanBP2-RanGAP1*SUMO1-Ubc9 SUMO E3-ligase complexes at the nuclear pore to reprogramme promyelocytic leukaemia protein nuclear bodies and reduce SUMOylation of Bloom syndrome protein, unleashing end degradation of viral cDNA. Concomitantly, Vpu inhibits RAD52-mediated homologous repair of viral cDNA, preventing the generation of dead-end circular forms of single copies of the long terminal repeat and permitting sustained nucleolytic attack. Our results identify Vpu as a key modulator of the DNA repair machinery. We show that Bloom syndrome protein eliminates nuclear HIV-1 cDNA and thereby suppresses immune sensing and proviral hyper-integration. Therapeutic targeting of DNA repair may facilitate the induction of antiviral immunity and suppress proviral integration replenishing latent HIV reservoirs.
Collapse
Affiliation(s)
- Meta Volcic
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Thomas G Hofmann
- Department of Epigenetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
- Institute of Toxicology, University of Mainz, Mainz, Germany
| | - Nathalie J Arhel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) CNRS FRE3689, Montpellier University, Montpellier, France
| | - Lisa Wiesmüller
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany.
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
27
|
Kollárovič G, Topping CE, Shaw EP, Chambers AL. The human HELLS chromatin remodelling protein promotes end resection to facilitate homologous recombination and contributes to DSB repair within heterochromatin. Nucleic Acids Res 2020; 48:1872-1885. [PMID: 31802118 PMCID: PMC7038987 DOI: 10.1093/nar/gkz1146] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022] Open
Abstract
Efficient double-strand break repair in eukaryotes requires manipulation of chromatin structure. ATP-dependent chromatin remodelling enzymes facilitate different DNA repair pathways, during different stages of the cell cycle and in varied chromatin environments. The contribution of remodelling factors to double-strand break repair within heterochromatin during G2 is unclear. The human HELLS protein is a Snf2-like chromatin remodeller family member and is mutated or misregulated in several cancers and some cases of ICF syndrome. HELLS has been implicated in the DNA damage response, but its mechanistic function in repair is not well understood. We discover that HELLS facilitates homologous recombination at two-ended breaks and contributes to repair within heterochromatic regions during G2. HELLS promotes initiation of HR by facilitating end-resection and accumulation of CtIP at IR-induced foci. We identify an interaction between HELLS and CtIP and establish that the ATPase domain of HELLS is required to promote DSB repair. This function of HELLS in maintenance of genome stability is likely to contribute to its role in cancer biology and demonstrates that different chromatin remodelling activities are required for efficient repair in specific genomic contexts.
Collapse
Affiliation(s)
- Gabriel Kollárovič
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Caitríona E Topping
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Edward P Shaw
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Anna L Chambers
- DNA-protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
28
|
Xie Y, Liu YK, Guo ZP, Guan H, Liu XD, Xie DF, Jiang YG, Ma T, Zhou PK. RBX1 prompts degradation of EXO1 to limit the homologous recombination pathway of DNA double-strand break repair in G1 phase. Cell Death Differ 2019; 27:1383-1397. [PMID: 31562368 PMCID: PMC7205894 DOI: 10.1038/s41418-019-0424-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 01/12/2023] Open
Abstract
End resection of DNA double-strand breaks (DSBs) to form 3′ single-strand DNA (ssDNA) is critical to initiate the homologous recombination (HR) pathway of DSB repair. HR pathway is strictly limited in the G1-phase cells because of lack of homologous DNA as the templates. Exonuclease 1 (EXO1) is the key molecule responsible for 3′ ssDNA formation of DSB end resection. We revealed that EXO1 is inactivated in G1-phase cells via ubiquitination-mediated degradation, resulting from an elevated expression level of RING-box protein 1 (RBX1) in G1 phase. The increased RBX1 significantly prompted the neddylation of Cullin1 and contributed to the G1 phase-specific degradation of EXO1. Knockdown of RBX1 remarkedly attenuated the degradation of EXO1 and increased the end resection and HR activity in γ-irradiated G1-phase cells, as demonstrated by the increased formation of RPA32, BrdU, and RAD51 foci. And EXO1 depletion mitigated DNA repair defects due to RBX1 reduction. Moreover, increased autophosphorylation of DNA-PKcs at S2056 was found to be responsible for the higher expression level of the RBX1 in the G1 phase. Inactivation of DNA-PKcs decreased RBX1 expression, and simultaneously increased EXO1 expression and DSB end resection in G1-phase cells. This study demonstrates a new mechanism for restraining the HR pathway of DNA DSB repair in G1 phase via RBX1-prompted inactivation of EXO1.
Collapse
Affiliation(s)
- Ying Xie
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China.,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, 410013, Changsha, China
| | - Yi-Ke Liu
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Zong-Pei Guo
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Xiao-Dan Liu
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Da-Fei Xie
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Yi-Guo Jiang
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Teng Ma
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China. .,Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, 101149, Beijing, China.
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 100850, Beijing, China. .,Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China.
| |
Collapse
|
29
|
Tomimatsu N, Mukherjee B, Harris JL, Boffo FL, Hardebeck MC, Potts PR, Khanna KK, Burma S. DNA-damage-induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate DNA repair. J Biol Chem 2017; 292:10779-10790. [PMID: 28515316 PMCID: PMC5491765 DOI: 10.1074/jbc.m116.772475] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/11/2017] [Indexed: 12/22/2022] Open
Abstract
End resection of DNA double-strand breaks (DSBs) to generate 3'-single-stranded DNA facilitates DSB repair via error-free homologous recombination (HR) while stymieing repair by the error-prone non-homologous end joining (NHEJ) pathway. Activation of DNA end resection involves phosphorylation of the 5' to 3' exonuclease EXO1 by the phosphoinositide 3-kinase-like kinases ATM (ataxia telangiectasia-mutated) and ATR (ATM and Rad3-related) and by the cyclin-dependent kinases 1 and 2. After activation, EXO1 must also be restrained to prevent over-resection that is known to hamper optimal HR and trigger global genomic instability. However, mechanisms by which EXO1 is restrained are still unclear. Here, we report that EXO1 is rapidly degraded by the ubiquitin-proteasome system soon after DSB induction in human cells. ATR inhibition attenuated DNA-damage-induced EXO1 degradation, indicating that ATR-mediated phosphorylation of EXO1 targets it for degradation. In accord with these results, EXO1 became resistant to degradation when its SQ motifs required for ATR-mediated phosphorylation were mutated. We show that upon the induction of DNA damage, EXO1 is ubiquitinated by a member of the Skp1-Cullin1-F-box (SCF) family of ubiquitin ligases in a phosphorylation-dependent manner. Importantly, expression of degradation-resistant EXO1 resulted in hyper-resection, which attenuated both NHEJ and HR and severely compromised DSB repair resulting in chromosomal instability. These findings indicate that the coupling of EXO1 activation with its eventual degradation is a timing mechanism that limits the extent of DNA end resection for accurate DNA repair.
Collapse
Affiliation(s)
- Nozomi Tomimatsu
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Bipasha Mukherjee
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Janelle Louise Harris
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Francesca Ludovica Boffo
- Department of Molecular Medicine and Medical Biotechnology, Università Federico II, Napoli 80131, Italy, and
| | - Molly Catherine Hardebeck
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Sandeep Burma
- From the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390,
| |
Collapse
|
30
|
Gil Del Alcazar CR, Todorova PK, Habib AA, Mukherjee B, Burma S. Augmented HR Repair Mediates Acquired Temozolomide Resistance in Glioblastoma. Mol Cancer Res 2016; 14:928-940. [PMID: 27358111 DOI: 10.1158/1541-7786.mcr-16-0125] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/16/2016] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults and is universally fatal. The DNA alkylating agent temozolomide is part of the standard-of-care for GBM. However, these tumors eventually develop therapy-driven resistance and inevitably recur. While loss of mismatch repair (MMR) and re-expression of MGMT have been shown to underlie chemoresistance in a fraction of GBMs, resistance mechanisms operating in the remaining GBMs are not well understood. To better understand the molecular basis for therapy-driven temozolomide resistance, mice bearing orthotopic GBM xenografts were subjected to protracted temozolomide treatment, and cell lines were generated from the primary (untreated) and recurrent (temozolomide-treated) tumors. As expected, the cells derived from primary tumors were sensitive to temozolomide, whereas the cells from the recurrent tumors were significantly resistant to the drug. Importantly, the acquired resistance to temozolomide in the recurrent lines was not driven by re-expression of MGMT or loss of MMR but was due to accelerated repair of temozolomide-induced DNA double-strand breaks (DSB). Temozolomide induces DNA replication-associated DSBs that are primarily repaired by the homologous recombination (HR) pathway. Augmented HR appears to underpin temozolomide resistance in the recurrent lines, as these cells were cross-resistant to other agents that induced replication-associated DSBs, exhibited faster resolution of damage-induced Rad51 foci, and displayed higher levels of sister chromatid exchanges (SCE). Furthermore, in light of recent studies demonstrating that CDK1 and CDK2 promote HR, it was found that CDK1/2 inhibitors countered the heightened HR in recurrent tumors and sensitized these therapy-resistant tumor cells to temozolomide. IMPLICATIONS Augmented HR repair is a novel mechanism underlying acquired temozolomide resistance in GBM, and this raises the possibility of improving the therapeutic response to temozolomide by targeting HR with small-molecule inhibitors of CDK1/2. Mol Cancer Res; 14(10); 928-40. ©2016 AACR.
Collapse
Affiliation(s)
| | | | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas. North Texas VA Medical Center, Dallas, Texas
| | - Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|