1
|
Brazeau-Henrie JT, Paquette AR, Boddy CN. In Vitro Biochemical Characterization of Excised Macrocyclizing Thioesterase Domains from Non-ribosomal Peptide Synthetases. Methods Mol Biol 2023; 2670:101-125. [PMID: 37184701 DOI: 10.1007/978-1-0716-3214-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Characterization of thioesterases (TEs) is an important step in understanding natural product biosynthesis. Studying non-ribosomal peptide synthetase (NRPS) TEs presents a unique set of challenges with specific cloning and expression issues as well as the challenging synthesis of the thioester peptides substrate required for characterization of the TE. In this method, we describe the cloning and expression of NRPS TEs, the synthesis of thioester peptides, and the in vitro biochemical characterization of the enzyme.
Collapse
Affiliation(s)
| | - André R Paquette
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Sanders EC, Sen SR, Gelston AA, Santos AM, Luo X, Bhuvan K, Tang DY, Raston CL, Weiss GA. Under-5-Minute Immunoblot Assays by Vortex Fluidic Device Acceleration. Angew Chem Int Ed Engl 2022; 61:e202202021. [PMID: 35333430 PMCID: PMC9156566 DOI: 10.1002/anie.202202021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 11/09/2022]
Abstract
Unlocking the potential of personalized medicine in point-of-care settings requires a new generation of biomarker and proteomic assays. Ideally, assays could inexpensively perform hundreds of quantitative protein measurements in parallel at the bedsides of patients. This goal greatly exceeds current capabilities. Furthermore, biomarker assays are often challenging to translate from benchtop to clinic due to difficulties achieving and assessing the necessary selectivity, sensitivity, and reproducibility. To address these challenges, we developed an efficient (<5 min), robust (comparatively lower CVs), and inexpensive (decreasing reagent use and cost by >70 %) immunoassay method. Specifically, the immunoblot membrane is dotted with the sample and then developed in a vortex fluidic device (VFD) reactor. All assay steps-blocking, binding, and washing-leverage the unique thin-film microfluidics of the VFD. The approach can accelerate direct, indirect, and sandwich immunoblot assays. The applications demonstrated include assays relevant to both the laboratory and the clinic.
Collapse
Affiliation(s)
- Emily C. Sanders
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Sanjana R. Sen
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Aidan A. Gelston
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Alicia M. Santos
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Xuan Luo
- Flinders Institute for Nanoscale Sciences and Technology, Flinders University, Adelaide, SA 5042 (AU)
| | - Keertna Bhuvan
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Derek Y. Tang
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| | - Colin L. Raston
- Flinders Institute for Nanoscale Sciences and Technology, Flinders University, Adelaide, SA 5042 (AU)
| | - Gregory A. Weiss
- Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025 (USA)
| |
Collapse
|
3
|
Weiss GA, Sanders EC, Sen SR, Gelston AA, Santos AM, Luo X, Bhuvan K, Tang DY, Raston CL. Under‐5‐Minute Immunoblot Assays by Vortex Fluidic Device Acceleration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gregory Alan Weiss
- University of California, Irvine Department of Chemistry 1102 Natural Sciences 2 92697-2025 Irvine UNITED STATES
| | | | - Sanjana R. Sen
- University of California Irvine Molecular Biology and Biochemistry UNITED STATES
| | | | | | - Xuan Luo
- Flinders University aFlinders Institute for Nanoscale Science and Technology AUSTRALIA
| | | | - Derek Y. Tang
- University of California Irvine Chemistry UNITED STATES
| | - Colin L. Raston
- Flinders University aFlinders Institute for Nanoscale Science and Technology UNITED STATES
| |
Collapse
|
4
|
Kurien BT, Scofield RH. Artifacts and Common Errors in Protein Gel Electrophoresis. Methods Mol Biol 2019; 1855:511-518. [PMID: 30426446 DOI: 10.1007/978-1-4939-8793-1_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In spite of taking precautions, some common mistakes creep into well-planned gel electrophoresis experiments. This occurs commonly in relation to calculating the cross-linking factor of a gel, polymerization temperature and time for a polyacrylamide gel, inducing aggregates in samples for electrophoresis, titrating the running buffer in electrophoresis, proper sample preparation, amount of protein to be loaded on a gel, sample buffer-to-protein ratios, incompletely removing phosphate-buffered saline from cells prior to cell lysis, and over-focusing of IPG strip in two-dimensional gel electrophoresis. In addition, subtle artifacts can have significant deleterious effects on carefully planned and executed experiments. Proteases that act at room temperature upon proteins in the sample buffer prior to heating, cleavage of the Asp-Pro bond upon prolonged heating of proteins at high temperatures, contamination of sample or sample buffer with keratin, leaching of chemicals from disposable plastic ware, and contamination of urea with ammonium cyanate are some of the common reasons for artifacts in gel electrophoresis. Taking proper heed to all these factors can greatly help generate good experimental results.
Collapse
Affiliation(s)
- Biji T Kurien
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| | - R Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
5
|
Thomas R, Kurien BT. Ultrarapid Sodium Dodecyl Sulfate Polyacrylamide Mini-Gel Electrophoresis. Methods Mol Biol 2019; 1855:491-494. [PMID: 30426443 DOI: 10.1007/978-1-4939-8793-1_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe here an ultrafast method for electrophoresing proteins on SDS-PAGE. Previously we reported a method to complete SDS-PAGE and immunoblotting in an hour, including electrophoresing proteins at 70°C in 10 min. Here we show that we can electrophorese molecular weight standards and bovine serum albumin on a 4-20% gradient gel in well under 10 min using heated (44 °C) Laemmli running buffer and high voltage.
Collapse
Affiliation(s)
- Rohit Thomas
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma School of Science and Mathematics, Oklahoma City, OK, USA
| | - Biji T Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. .,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, Atherton PJ. An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 2017; 27:4-25. [PMID: 27263489 PMCID: PMC5138151 DOI: 10.1111/sms.12702] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 12/11/2022]
Abstract
The applications of Western/immunoblotting (WB) techniques have reached multiple layers of the scientific community and are now considered routine procedures in the field of physiology. This is none more so than in relation to skeletal muscle physiology (i.e., resolving the mechanisms underpinning adaptations to exercise). Indeed, the inclusion of WB data is now considered an essential aspect of many such physiological publications to provide mechanistic insight into regulatory processes. Despite this popularity, and due to the ubiquitous and relatively inexpensive availability of WB equipment, the quality of WB in publications and subsequent analysis and interpretation of the data can be variable, perhaps resulting in spurious conclusions. This may be due to poor laboratory technique and/or lack of comprehension of the critical steps involved in WB and what quality control procedures should be in place to ensure robust data generation. The present review aims to provide a detailed description and critique of WB procedures and technicalities, from sample collection through preparation, blotting and detection, to analysis of the data collected. We aim to provide the reader with improved expertise to critically conduct, evaluate, and troubleshoot the WB process, to produce reproducible and reliable blots.
Collapse
Affiliation(s)
- J J Bass
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - D J Wilkinson
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - D Rankin
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - B E Phillips
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - N J Szewczyk
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - K Smith
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| | - P J Atherton
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|