1
|
Doritchamou JY, Renn JP, Jenkins B, Fried M, Duffy PE. A single full-length VAR2CSA ectodomain variant purifies broadly neutralizing antibodies against placental malaria isolates. eLife 2022; 11:76264. [PMID: 35103596 PMCID: PMC8959597 DOI: 10.7554/elife.76264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Placental malaria (PM) is a deadly syndrome most frequent and severe in first pregnancies. PM results from accumulation of Plasmodium falciparum-infected erythrocytes (IE) that express the surface antigen VAR2CSA and bind to chondroitin sulfate A (CSA) in the placenta. Women become PM-resistant over successive pregnancies as they develop anti-adhesion and anti-VAR2CSA antibodies, supporting VAR2CSA as the leading PM-vaccine candidate. However, the first VAR2CSA subunit vaccines failed to induce broadly neutralizing antibody and it is known that naturally acquired antibodies target both variant-specific and conserved epitopes. It is crucial to determine whether effective vaccines will require incorporation of many or only a single VAR2CSA variants. Here, IgG from multigravidae was sequentially purified on five full-length VAR2CSA ectodomain variants, thereby depleting IgG reactivity to each. The five VAR2CSA variants purified ~0.7% of total IgG and yielded both strain-transcending and strain-specific reactivity to VAR2CSA and IE-surface antigen. In two independent antibody purification/depletion experiments with permutated order of VAR2CSA variants, IgG purified on the first VAR2CSA antigen displayed broad cross-reactivity to both recombinant and native VAR2CSA variants, and inhibited binding of all isolates to CSA. IgG remaining after depletion on all variants showed significantly reduced binding-inhibition activity compared to initial total IgG. These findings demonstrate that a single VAR2CSA ectodomain variant displays conserved epitopes that are targeted by neutralizing (or binding-inhibitory) antibodies shared by multiple parasite strains, including maternal isolates. This suggests that a broadly effective PM-vaccine can be achieved with a limited number of VAR2CSA variants. Contracting malaria during pregnancy – especially a first pregnancy – can lead to a severe, placental form of the disease that is often fatal. Red blood cells infected with the malaria parasite Plasmodium falciparum display a protein, VAR2CSA, which can recognize and bind CSA molecules present on placental cells and in placental blood spaces. This leads to the infected blood cells accumulating in the placenta and inducing harmful inflammation. Having been exposed to the parasite in prior pregnancies generates antibodies that target VAR2CSA, stopping the infected blood cells from latching onto placental CSA or tagging them for immune destruction. Overall, this makes placental malaria less severe in following pregnancies, and suggests that vaccines could be developed based on VAR2CSA. However, this protein has regions that can vary in structure, meaning that P. falciparaum can generate many VAR2CSA variants. Individuals exposed to the parasite naturally generate antibodies that block a wide array of variants from attaching to CSA. In contrast, first-generation vaccines based on VAR2CSA fragments have only induced variant-specific antibodies, therefore offering limited protection against infection. As a response, Doritchamou et al. set out to find VAR2CSA structures that could be recognized by antibodies targeting an array of variants. Blood was obtained from women who had had multiple pregnancies and were immune to malaria. Their plasma was passed over five different large VAR2CSA variants in order to isolate and purify antibodies that attached to these structures. Doritchamou et al. found that antibodies binding to individual VAR2CSA structures could also recognise a wide array of VAR2CSA variants and blocked all tested parasites from sticking to CSA. While further research is needed, these findings highlight antibodies that cross-react to diverse VAR2CSA variants and could be used to design more effective vaccines targeting placental malaria.
Collapse
Affiliation(s)
- Justin Ya Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Jonathan P Renn
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Bethany Jenkins
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Rockville, United States
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| |
Collapse
|
2
|
Aitken EH, Damelang T, Ortega-Pajares A, Alemu A, Hasang W, Dini S, Unger HW, Ome-Kaius M, Nielsen MA, Salanti A, Smith J, Kent S, Hogarth PM, Wines BD, Simpson JA, Chung AW, Rogerson SJ. Developing a multivariate prediction model of antibody features associated with protection of malaria-infected pregnant women from placental malaria. eLife 2021; 10:e65776. [PMID: 34181872 PMCID: PMC8241440 DOI: 10.7554/elife.65776] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background Plasmodium falciparum causes placental malaria, which results in adverse outcomes for mother and child. P. falciparum-infected erythrocytes that express the parasite protein VAR2CSA on their surface can bind to placental chondroitin sulfate A. It has been hypothesized that naturally acquired antibodies towards VAR2CSA protect against placental infection, but it has proven difficult to identify robust antibody correlates of protection from disease. The objective of this study was to develop a prediction model using antibody features that could identify women protected from placental malaria. Methods We used a systems serology approach with elastic net-regularized logistic regression, partial least squares discriminant analysis, and a case-control study design to identify naturally acquired antibody features mid-pregnancy that were associated with protection from placental malaria at delivery in a cohort of 77 pregnant women from Madang, Papua New Guinea. Results The machine learning techniques selected 6 out of 169 measured antibody features towards VAR2CSA that could predict (with 86% accuracy) whether a woman would subsequently have active placental malaria infection at delivery. Selected features included previously described associations with inhibition of placental binding and/or opsonic phagocytosis of infected erythrocytes, and network analysis indicated that there are not one but multiple pathways to protection from placental malaria. Conclusions We have identified candidate antibody features that could accurately identify malaria-infected women as protected from placental infection. It is likely that there are multiple pathways to protection against placental malaria. Funding This study was supported by the National Health and Medical Research Council (Nos. APP1143946, GNT1145303, APP1092789, APP1140509, and APP1104975).
Collapse
Affiliation(s)
- Elizabeth H Aitken
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Timon Damelang
- Department of Microbiology and Immunology, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Amaya Ortega-Pajares
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Agersew Alemu
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Wina Hasang
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of MelbourneMelbourneAustralia
| | - Holger W Unger
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
- Department of Obstetrics and Gynaecology, Royal Darwin HospitalDarwinAustralia
- Menzies School of Health ResearchDarwinAustralia
| | - Maria Ome-Kaius
- Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Morten A Nielsen
- Centre for Medical Parasitology, Department of Microbiology and immunology, University of CopenhagenCopenhagenDenmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Microbiology and immunology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Disease, Copenhagen University HospitalCopenhagenDenmark
| | - Joe Smith
- Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Stephen Kent
- Department of Microbiology and Immunology, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - P Mark Hogarth
- Seattle Children’s Research InstituteSeattleUnited States
- Immune Therapies Group, Centre for Biomedical Research, Burnet InstituteMelbourneAustralia
- Department of Clinical Pathology, University of MelbourneMelbourneAustralia
- Department of Immunology and Pathology, Monash UniversityMelbourneAustralia
| | - Bruce D Wines
- Immune Therapies Group, Centre for Biomedical Research, Burnet InstituteMelbourneAustralia
- Department of Clinical Pathology, University of MelbourneMelbourneAustralia
- Department of Immunology and Pathology, Monash UniversityMelbourneAustralia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of MelbourneMelbourneAustralia
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, the Doherty InstituteMelbourneAustralia
| | - Stephen J Rogerson
- Department of Medicine, University of Melbourne, the Doherty InstituteMelbourneAustralia
| |
Collapse
|
3
|
Mordmüller B, Sulyok M, Egger-Adam D, Resende M, de Jongh WA, Jensen MH, Smedegaard HH, Ditlev SB, Soegaard M, Poulsen L, Dyring C, Calle CL, Knoblich A, Ibáñez J, Esen M, Deloron P, Ndam N, Issifou S, Houard S, Howard RF, Reed SG, Leroy O, Luty AJF, Theander TG, Kremsner PG, Salanti A, Nielsen MA. First-in-human, Randomized, Double-blind Clinical Trial of Differentially Adjuvanted PAMVAC, A Vaccine Candidate to Prevent Pregnancy-associated Malaria. Clin Infect Dis 2020; 69:1509-1516. [PMID: 30629148 PMCID: PMC6792113 DOI: 10.1093/cid/ciy1140] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/03/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Malaria in pregnancy has major impacts on mother and child health. To complement existing interventions, such as intermittent preventive treatment and use of impregnated bed nets, we developed a malaria vaccine candidate with the aim of reducing sequestration of asexual "blood-stage" parasites in the placenta, the major virulence mechanism. METHODS The vaccine candidate PAMVAC is based on a recombinant fragment of VAR2CSA, the Plasmodium falciparum protein responsible for binding to the placenta via chondroitin sulfate A (CSA). Healthy, adult malaria-naive volunteers were immunized with 3 intramuscular injections of 20 μg (n = 9) or 50 μg (n = 27) PAMVAC, adjuvanted with Alhydrogel or glucopyranosyl lipid adjuvant in stable emulsion (GLA-SE) or in a liposomal formulation with QS21 (GLA-LSQ). Allocation was random and double blind. The vaccine was given every 4 weeks. Volunteers were observed for 6 months following last immunization. RESULTS All PAMVAC formulations were safe and well tolerated. A total of 262 adverse events (AEs) occurred, 94 (10 grade 2 and 2 grade 3) at least possibly related to the vaccine. No serious AEs occurred. Distribution and severity of AEs were similar in all arms. PAMVAC was immunogenic in all participants. PAMVAC-specific antibody levels were highest with PAMVAC-GLA-SE. The antibodies inhibited binding of VAR2CSA expressing P. falciparum-infected erythrocytes to CSA in a standardized functional assay. CONCLUSIONS PAMVAC formulated with Alhydrogel or GLA-based adjuvants was safe, well tolerated, and induced functionally active antibodies. Next, PAMVAC will be assessed in women before first pregnancies in an endemic area. CLINICAL TRIALS REGISTRATION EudraCT 2015-001827-21; ClinicalTrials.gov NCT02647489.
Collapse
Affiliation(s)
- Benjamin Mordmüller
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon
| | - Mihály Sulyok
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany
| | - Diane Egger-Adam
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | | | - Mette H Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | - Helle Holm Smedegaard
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | - Sisse B Ditlev
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | | | | | | | - Carlos Lamsfus Calle
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany
| | - Annette Knoblich
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany
| | - Javier Ibáñez
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany
| | - Meral Esen
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon
| | - Philippe Deloron
- Mère et Enfant face aux Infections Tropicales, Institut de Recherche pour le Développement, Université Paris 5, Sorbonne Paris Cité, France
| | - Nicaise Ndam
- Mère et Enfant face aux Infections Tropicales, Institut de Recherche pour le Développement, Université Paris 5, Sorbonne Paris Cité, France
| | - Saadou Issifou
- Fondation pour la Recherche Scientifique and Institut de Recherche Clinique du Bénin, Cotonou
| | | | | | - Steven G Reed
- Infectious Disease Research Institute, Seattle, Washington
| | - Odile Leroy
- European Vaccine Initiative, Heidelberg, Germany
| | - Adrian J F Luty
- Mère et Enfant face aux Infections Tropicales, Institut de Recherche pour le Développement, Université Paris 5, Sorbonne Paris Cité, France
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | - Peter G Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| |
Collapse
|
4
|
Janitzek CM, Peabody J, Thrane S, H R Carlsen P, G Theander T, Salanti A, Chackerian B, A Nielsen M, Sander AF. A proof-of-concept study for the design of a VLP-based combinatorial HPV and placental malaria vaccine. Sci Rep 2019; 9:5260. [PMID: 30918267 PMCID: PMC6437161 DOI: 10.1038/s41598-019-41522-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/08/2019] [Indexed: 11/16/2022] Open
Abstract
In Africa, cervical cancer and placental malaria (PM) are a major public health concern. There is currently no available PM vaccine and the marketed Human Papillomavirus (HPV) vaccines are prohibitively expensive. The idea of a combinatorial HPV and PM vaccine is attractive because the target population for vaccination against both diseases, adolescent girls, would be overlapping in Sub-Saharan Africa. Here we demonstrate proof-of-concept for a combinatorial vaccine utilizing the AP205 capsid-based virus-like particle (VLP) designed to simultaneously display two clinically relevant antigens (the HPV RG1 epitope and the VAR2CSA PM antigen). Three distinct combinatorial VLPs were produced displaying one, two or five concatenated RG1 epitopes without obstructing the VLP’s capacity to form. Co-display of VAR2CSA was achieved through a split-protein Tag/Catcher interaction without hampering the vaccine stability. Vaccination with the combinatorial vaccine(s) was able to reduce HPV infection in vivo and induce anti-VAR2CSA IgG antibodies, which inhibited binding between native VAR2CSA expressed on infected red blood cells and chondroitin sulfate A in an in vitro binding-inhibition assay. These results show that the Tag/Catcher AP205 VLP system can be exploited to make a combinatorial vaccine capable of eliciting antibodies with dual specificity.
Collapse
Affiliation(s)
- Christoph M Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julianne Peabody
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Susan Thrane
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Philip H R Carlsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bryce Chackerian
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, USA
| | - Morten A Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
5
|
Pehrson C, Salanti A, Theander TG, Nielsen MA. Pre-clinical and clinical development of the first placental malaria vaccine. Expert Rev Vaccines 2017; 16:613-624. [PMID: 28434376 DOI: 10.1080/14760584.2017.1322512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Malaria during pregnancy is a massive health problem in endemic areas. Placental malaria infections caused by Plasmodium falciparum are responsible for up to one million babies being born with a low birth weight every year. Significant efforts have been invested into preventing the condition. Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical vaccine development. However, all papers from these searches were not systematically included. Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy will contribute to endpoint measurements, further it may require extensive follow-up to establish protection. Future second generation vaccines may overcome the inherent challenges in making an effective placental malaria vaccine.
Collapse
Affiliation(s)
- Caroline Pehrson
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Ali Salanti
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Thor G Theander
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Morten A Nielsen
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| |
Collapse
|
6
|
Pehrson C, Heno KK, Adams Y, Resende M, Mathiesen L, Soegaard M, de Jongh WA, Theander TG, Salanti A, Nielsen MA. Comparison of functional assays used in the clinical development of a placental malaria vaccine. Vaccine 2016; 35:610-618. [PMID: 28012775 DOI: 10.1016/j.vaccine.2016.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Malaria in pregnancy is associated with significant morbidity in pregnant women and their offspring. Plasmodium falciparum infected erythrocytes (IE) express VAR2CSA that mediates binding to chondroitin sulphate A (CSA) in the placenta. Two VAR2CSA-based vaccines for placental malaria are in clinical development. The purpose of this study was to evaluate the robustness and comparability of binding inhibition assays used in the clinical development of placental malaria vaccines. METHODS The ability of sera from animals immunised with different VAR2CSA constructs to inhibit IE binding to CSA was investigated in three in vitro assays using 96-well plates, petri dishes, capillary flow and an ex vivo placental perfusion assay. RESULTS The inter-assay variation was not uniform between assays and ranged from above ten-fold in the flow assay to two-fold in the perfusion assay. The intra-assay variation was highest in the petri dish assay. A positive correlation between IE binding avidity and the level of binding after antibody inhibition in the petri dish assay indicate that high avidity IE binding is more difficult to inhibit. The highest binding inhibition sensitivity was found in the 96-well and petri dish assays compared to the flow and perfusion assays where binding inhibition required higher antibody titers. CONCLUSIONS The inhibitory capacity of antibodies is not easily translated between assays and the high sensitivity of the 96-well and petri dish assays stresses the need for comparing serial dilutions of serum. Furthermore, IE binding avidity must be in the same range when comparing data from different days. There was an overall concordance in the capacity of antibody-mediated inhibition, when comparing the in vitro assays with the perfusion assay, which more closely represents in vivo conditions. Importantly the ID1-ID2a protein in a liposomal formulation, currently in a phase I trial, effectively induced antibodies that inhibited IE adhesion in placental tissue.
Collapse
Affiliation(s)
- Caroline Pehrson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Kristine K Heno
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark.
| | - Max Soegaard
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark.
| | - Willem A de Jongh
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark.
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| |
Collapse
|
7
|
Chêne A, Houard S, Nielsen MA, Hundt S, D'Alessio F, Sirima SB, Luty AJF, Duffy P, Leroy O, Gamain B, Viebig NK. Clinical development of placental malaria vaccines and immunoassays harmonization: a workshop report. Malar J 2016; 15:476. [PMID: 27639691 PMCID: PMC5027113 DOI: 10.1186/s12936-016-1527-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
Placental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays with a goal to define standards that will allow comparative assessment of different placental malaria vaccine candidates. The recommendations of these workshops should guide researchers and clinicians in the further development of placental malaria vaccines.
Collapse
Affiliation(s)
- Arnaud Chêne
- Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, Institut National de la Transfusion Sanguine, Paris, France
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Sophia Hundt
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Flavia D'Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou 01, Burkina Faso
| | - Adrian J F Luty
- IRD MERIT UMR 216, 75006, Paris, France.,COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75270, Paris, France
| | - Patrick Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
| | - Odile Leroy
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Benoit Gamain
- Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, Institut National de la Transfusion Sanguine, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany.
| |
Collapse
|