1
|
Barsch F, Mamilos A, Babel M, Wagner WL, Winther HB, Schmitt VH, Hierlemann H, Teufel A, Brochhausen C. Semiautomated quantification of the fibrous tissue response to complex three-dimensional filamentous scaffolds using digital image analysis. J Biomed Mater Res A 2021; 110:353-364. [PMID: 34390322 DOI: 10.1002/jbm.a.37293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/24/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis represents a relevant response to the implantation of biomaterials, which occurs not only at the tissue-material interface (fibrotic encapsulation) but also within the void fraction of complex three-dimensional (3D) biomaterial constructions (fibrotic ingrowth). Usual evaluation of the biocompatibility mostly depicts fibrosis at the interface of the biomaterial using semiquantitative scores. Here, the relations between encapsulation and infiltrating fibrotic growth are poorly represented. Virtual pathology and digital image analysis provide new strategies to assess fibrosis in a more differentiated way. In this study, we adopted a method previously used to quantify fibrosis in visceral organs to the quantification of fibrosis to 3D biomaterials. In a proof-of-concept study, we transferred the "Collagen Proportionate Area" (CPA) analysis from hepatology to the field of biomaterials. As one task of an experimental animal study, we used CPA analysis to quantify the fibrotic ingrowth into a filamentous scaffold after subcutaneous implantation. We were able to demonstrate that the application of the CPA analysis is well suited as an additional fibrosis evaluation strategy for new biomaterial constructions. The CPA method can contribute to a better understanding of the fibrotic interactions between 3D scaffolds and the host tissue responses.
Collapse
Affiliation(s)
- Friedrich Barsch
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Institute of Pathology, University Regensburg, Regensburg, Germany
| | - Andreas Mamilos
- Institute of Pathology, University Regensburg, Regensburg, Germany
| | - Maximilian Babel
- Institute of Pathology, University Regensburg, Regensburg, Germany.,Central Biobank Regensburg, University Regensburg and University Hospital Regensburg, Regensburg, Germany
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), Heidelberg, Germany
| | - Hinrich B Winther
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Volker H Schmitt
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | | | - Andreas Teufel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, Regensburg, Germany.,Central Biobank Regensburg, University Regensburg and University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Mortati L, de Girolamo L, Perucca Orfei C, Viganò M, Brayda-Bruno M, Ragni E, Colombini A. In Vitro Study of Extracellular Vesicles Migration in Cartilage-Derived Osteoarthritis Samples Using Real-Time Quantitative Multimodal Nonlinear Optics Imaging. Pharmaceutics 2020; 12:pharmaceutics12080734. [PMID: 32764234 PMCID: PMC7464389 DOI: 10.3390/pharmaceutics12080734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stromal cells (MSCs)-derived extracellular vesicles (EVs) are promising therapeutic nano-carriers for the treatment of osteoarthritis (OA). The assessment of their uptake in tissues is mandatory but, to date, available technology does not allow to track and quantify incorporation in real-time. To fill this knowledge gap, the present study was intended to develop an innovative technology to determine kinetics of fluorescent MSC-EV uptake by means of time-lapse quantitative microscopy techniques. Adipose-derived mesenchymal stromal cells (ASCs)-EVs were fluorescently labeled and tracked during their uptake into chondrocytes micromasses or cartilage explants, both derived from OA patients. Immunofluorescence and time-lapse coherent anti-Stokes Raman scattering, second harmonic generation and two-photon excited fluorescence were used to follow and quantify incorporation. EVs penetration appeared quickly after few minutes and reached 30-40 μm depth after 5 h in both explants and micromasses. In explants, uptake was slightly faster, with EVs signal overlapping both extracellular matrix and chondrocytes, whereas in micromasses a more homogenous diffusion was observed. The finding of this study demonstrates that this innovative technology is a powerful tool to monitor EVs migration in tissues characterized by a complex extracellular network, and to obtain data resembling in vivo conditions.
Collapse
Affiliation(s)
- Leonardo Mortati
- INRIM-Istituto Nazionale di Ricerca Metrologica, 10135 Torino, Italy;
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, via R. Galeazzi 4, 20161 Milano, Italy; (L.d.G.); (C.P.O.); (M.V.); (A.C.)
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, via R. Galeazzi 4, 20161 Milano, Italy; (L.d.G.); (C.P.O.); (M.V.); (A.C.)
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, via R. Galeazzi 4, 20161 Milano, Italy; (L.d.G.); (C.P.O.); (M.V.); (A.C.)
| | - Marco Brayda-Bruno
- IRCCS Istituto Ortopedico Galeazzi, III Spine Surgery—Scoliosis Department, via R. Galeazzi 4, 20161 Milano, Italy;
| | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, via R. Galeazzi 4, 20161 Milano, Italy; (L.d.G.); (C.P.O.); (M.V.); (A.C.)
- Correspondence: ; Tel.: +39-02-66214067
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, via R. Galeazzi 4, 20161 Milano, Italy; (L.d.G.); (C.P.O.); (M.V.); (A.C.)
| |
Collapse
|
3
|
Jiang CC, Hsieh CH, Liao CJ, Chang WH, Liao WJ, Tsai-Wu JJ, Chiang H. Collagenase treatment of cartilaginous matrix promotes fusion of adjacent cartilage. Regen Ther 2020; 15:97-102. [PMID: 33426207 PMCID: PMC7770344 DOI: 10.1016/j.reth.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 11/15/2022] Open
Abstract
In articular cartilage-repair, grafts usually fuse unsatisfactorily with surrounding host cartilage. Enzymatic dissociation of cartilaginous matrix to free chondrocytes may benefit fusion. We tested such a hypothesis with human cartilage in vitro, and with porcine cartilage in vivo. Human articular cartilage was collected from knee surgeries, cut into disc-and-ring sets, and randomly distributed into three groups: disc-and-ring sets in Group 1 were left untreated; in Group 2 only discs, and in Group 3 both discs and rings were treated with enzyme. Each disc-and-ring reassembly was cultured in a perfusion system for 14 days; expression of cartilage marker proteins and genes was evaluated by immunohistochemistry and PCR. Porcine articular cartilage from knees was similarly fashioned into disc-and-ring combinations. Specimens were randomly distributed into a control group without further treatment, and an experimental group with both disc and ring treated with enzyme. Each disc-and-ring reassembly was transplanted into subcutaneous space of a nude mouse for 30 days, and retrieved to examine disc-ring interface. In in vitro study with human cartilage, a visible gap remained at disc-ring interfaces in Group 1, yet became indiscernible in Group 2 and 3. Marker genes, including type II collagen, aggrecan and Sox 9, were well expressed by chondrocytes in all specimens, indicating that chondrocytes’ phenotype retained regardless of enzymatic treatment. Similar results were found inin vivo study with porcine cartilage. Enzymatic dissociation of cartilaginous matrix promotes fusion of adjacent cartilage. The clinical relevance may be a novel method to facilitate integration of repaired cartilage in joints. Cartilage repair-patches fuse poorly to surrounding host cartilage. Collagenase treatment of adjacent cartilaginous tissues facilitates their fusion. Collagenase treatment of cartilage promotes chondrocyte proliferation and presentation. Collagenase treatment does not affect phenotypes of chondrocytes.
Collapse
Key Words
- Cartilage fusion
- Cartilage repair
- Cartilaginous matrix
- DMMB, 1,9-dimethyl methylene blue
- DNA, deoxyribonucleic acid
- Enzymatic treatment
- GAG, glycosaminoglycan
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- H&E, hematoxylin and eosin
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- RNA, ribonucleic acid
- Sox 9, SRY-box transcription factor 9
- cDNA, complementary deoxyribonucleic acid
Collapse
Affiliation(s)
- Ching-Chuan Jiang
- Department of Orthopaedic Surgery, Fu Jen Catholic University Hospital, Taipei, Taiwan
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | - Wei-Ju Liao
- Taiwan Biomaterial Co., Ltd., Taipei, Taiwan
| | - Jyy-Jih Tsai-Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hongsen Chiang
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Corresponding author. National Taiwan University Hospital, 7 Chungsan South Road, Taipei, 10002, Taiwan.
| |
Collapse
|
4
|
Kadler S, Vural Ö, Rosowski J, Reiners-Schramm L, Lauster R, Rosowski M. Effects of 5-aza-2´-deoxycytidine on primary human chondrocytes from osteoarthritic patients. PLoS One 2020; 15:e0234641. [PMID: 32574164 PMCID: PMC7310740 DOI: 10.1371/journal.pone.0234641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022] Open
Abstract
Chondrocytes, comparable to many cells from the connective tissue, dedifferentiate and end up in a similar fibroblastoid cell type, marked by the loss of the specific expression pattern. Here, chondrocytes isolated from osteoarthritic (OA) patients were investigated. The OA chondrocytes used in this work were not affected by the loss of specific gene expression upon cell culture. The mRNA levels of known cartilage markers, such as SOX5, SOX6, SOX9, aggrecan and proteoglycan 4, remained unchanged. Since chondrocytes from OA and healthy tissue show different DNA methylation patterns, the underlying mechanisms of cartilage marker maintenance were investigated with a focus on the epigenetic modification by DNA methylation. The treatment of dedifferentiated chondrocytes with the DNA methyltransferase inhibitor 5-aza-2´-deoxycytidine (5-aza-dC) displayed no considerable impact on the maintenance of marker gene expression observed in the dedifferentiated state, while the chondrogenic differentiation capacity was compromised. On the other hand, the pre-cultivation with 5-aza-dC improved the osteogenesis and adipogenesis of OA chondrocytes. Contradictory to these effects, the DNA methylation levels were not reduced after treatment for four weeks with 1 μM 5-aza-dC. In conclusion, 5-aza-dC affects the differentiation capacity of OA chondrocytes, while the global DNA methylation level remains stable. Furthermore, dedifferentiated chondrocytes isolated from late-stage OA patients represent a reliable cell source for in vitro studies and disease models without the need for additional alterations.
Collapse
Affiliation(s)
- Shirin Kadler
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| | - Özlem Vural
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jennifer Rosowski
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Luzia Reiners-Schramm
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Roland Lauster
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Mark Rosowski
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Liebesny PH, Mroszczyk K, Zlotnick H, Hung HH, Frank E, Kurz B, Zanotto G, Frisbie D, Grodzinsky AJ. Enzyme Pretreatment plus Locally Delivered HB-IGF-1 Stimulate Integrative Cartilage Repair In Vitro. Tissue Eng Part A 2019; 25:1191-1201. [PMID: 31237484 PMCID: PMC6760182 DOI: 10.1089/ten.tea.2019.0013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/10/2019] [Indexed: 01/20/2023] Open
Abstract
IMPACT STATEMENT A critical attribute for the long-term success of cartilage defect repair is the strong integration between the repair tissue and the surrounding native tissue. Current approaches utilized by physicians fail to achieve this attribute, leading to eventual relapse of the defect. This article demonstrates the concept of a simple, clinically viable approach for enhancing tissue integration via the combination of a safe, transient enzymatic treatment with a locally delivered, retained growth factor through an in vitro hydrogel/cartilage explant model.
Collapse
Affiliation(s)
- Paul H. Liebesny
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Keri Mroszczyk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hannah Zlotnick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Han-Hwa Hung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Eliot Frank
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bodo Kurz
- Anatomical Institute, University of Kiel, Kiel, Germany
| | - Gustavo Zanotto
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, Colorado
| | - David Frisbie
- Department of Clinical Sciences, Orthopaedic Research Center, Colorado State University, Fort Collins, Colorado
| | - Alan J. Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
6
|
So EY, Sun C, Wu KQ, Driesman A, Leggett S, Isaac M, Spangler T, Dubielecka-Szczerba PM, Reginato AM, Liang OD. Lipid phosphatase SHIP-1 regulates chondrocyte hypertrophy and skeletal development. J Cell Physiol 2019; 235:1425-1437. [PMID: 31287165 PMCID: PMC6879780 DOI: 10.1002/jcp.29063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
SH2‐containing inositol‐5′‐phosphatase‐1 (SHIP‐1) controls the phosphatidylinositol‐3′‐kinase (PI3K) initiated signaling pathway by limiting cell membrane recruitment and activation of Akt. Despite the fact that many of the growth factors important to cartilage development and functions are able to activate the PI3K signal transduction pathway, little is known about the role of PI3K signaling in chondrocyte biology and its contribution to mammalian skeletogenesis. Here, we report that the lipid phosphatase SHIP‐1 regulates chondrocyte hypertrophy and skeletal development through its expression in osteochondroprogenitor cells. Global SHIP‐1 knockout led to accelerated chondrocyte hypertrophy and premature formation of the secondary ossification center in the bones of postnatal mice. Drastically higher vascularization and greater number of c‐kit + progenitors associated with sinusoids in the bone marrow also indicated more advanced chondrocyte hypertrophic differentiation in SHIP‐1 knockout mice than in wild‐type mice. In corroboration with the in vivo phenotype, SHIP‐1 deficient PDGFRα + Sca‐1 + osteochondroprogenitor cells exhibited rapid differentiation into hypertrophic chondrocytes under chondrogenic culture conditions in vitro. Furthermore, SHIP‐1 deficiency inhibited hypoxia‐induced cellular activation of Akt and extracellular‐signal‐regulated kinase (Erk) and suppressed hypoxia‐induced cell proliferation. These results suggest that SHIP‐1 is required for hypoxia‐induced growth signaling under physiological hypoxia in the bone marrow. In conclusion, the lipid phosphatase SHIP‐1 regulates skeletal development by modulating chondrogenesis and the hypoxia response of the osteochondroprogenitors during endochondral bone formation.
Collapse
Affiliation(s)
- Eui-Young So
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Changqi Sun
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Keith Q Wu
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Adam Driesman
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Susan Leggett
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mauricio Isaac
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Travis Spangler
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Patrycja M Dubielecka-Szczerba
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Anthony M Reginato
- Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Olin D Liang
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
7
|
Novel Simple Strategy for Cartilage Tissue Engineering Using Stem Cells and Synthetic Polymer Scaffold. J Craniofac Surg 2019; 30:940-943. [PMID: 30865124 DOI: 10.1097/scs.0000000000005374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cartilage created by tissue engineering is a promising new development in facial reconstructive surgery. The purpose of this study was to evaluate the histological results of implantation of synthetic polymer scaffold with chondrocytes differentiated from adipose-derived mesenchymal stem cells. Adipose tissue obtained from Wistar albino rats was dissociated, incubated and placed in culture medium. After a sufficient level of stem cell proliferation, the differentiation phase was started. Cells were collected on the 7th and 21st day of culture for chondrogenic characterization. After the 21st day of the differentiation phase of chondrocytes, they were transferred onto poly(dl-lactide-epsilon-caprolactone) synthetic polymer and culture continued for 24 hours. The scaffold with chondrocytes was then implanted into a subcutaneous area of skin on the back of the neck of the rat. Six weeks after implantation, all rats were sacrificed and the implantation areas were analyzed. Chondrocytes derived from adipogenic mesenchymal stem cells were stained positively with collagen II, aggrecan and Sox-9 after the differentiation stages. Histological examination of the excised material showed that chondrocytes were present, and the scaffold had been completely absorbed. The results of this study indicate that the differentiation method from mesenchymal stem cells to chondrogenic lineage was straightforward and scaffold with cells was easily accessible. This technique may be a good option for cartilage tissue engineering.
Collapse
|
8
|
miR-134 inhibits chondrogenic differentiation of bone marrow mesenchymal stem cells by targetting SMAD6. Biosci Rep 2019; 39:BSR20180921. [PMID: 30135141 PMCID: PMC6356013 DOI: 10.1042/bsr20180921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023] Open
Abstract
Various miRNAs have been reported to regulate the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs); however, whether miR-134 plays a role in this biological process remains undetermined. In the present study, we first evaluated the chondrogenic differentiation of BMSCs by Alcian blue staining, and examined the miR-134 expression by quantitative real-time PCR (qRT-PCR) during this process. And miR-134 inhibitor was used to investigate the functions of miR-134 in chondrogenic differentiation of BMSCs by Alcian blue staining, qRT-PCR, and Western blot. Subsequently, the correlation between miR-134 and SMAD6 was assessed via bioinformatics analysis and dual-luciferase reporter assay. Finally, the role of SMAD6 in chondrogenic differentiation of BMSCs was also determined through Alcian blue staining, qRT-PCR, and Western blot. As results showed that miR-134 expression was significantly down-regulated during chondrogenic differentiation, and inhibition of miR-134 obviously promoted chondrogenic differentiation. Dual-luciferase reporter assay indicated that miR-134 could directly target the 3′-UTRs of SMAD6, inhibit miR-134 expression in BMSCs, and up-regulate SMAD6 expression. Moreover, we found that overexpression of SMAD6 significantly promoted chondrogenic differentiation, and that SMAD6-induced promotion of chondrogenic differentiation could be reversed by miR-134 mimics. In conclusion, our findings suggest that miR-134 may act as a negative regulator during chondrogenic differentiation of BMSCs by interacting with SMAD6.
Collapse
|
9
|
Sun X, Yin H, Wang Y, Lu J, Shen X, Lu C, Tang H, Meng H, Yang S, Yu W, Zhu Y, Guo Q, Wang A, Xu W, Liu S, Lu S, Wang X, Peng J. In Situ Articular Cartilage Regeneration through Endogenous Reparative Cell Homing Using a Functional Bone Marrow-Specific Scaffolding System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38715-38728. [PMID: 30360061 DOI: 10.1021/acsami.8b11687] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In situ tissue regeneration by homing endogenous reparative cells to the injury site has been extensively researched as a promising alternative strategy to facilitate tissue repair. In this study, a promising scaffolding system DCM-RAD/SKP, which integrated a decellularized cartilage matrix (DCM)-derived scaffold with a functionalized self-assembly Ac-(RADA)4-CONH2/Ac-(RADA)4GGSKPPGTSS-CONH2 (RAD/SKP) peptide nanofiber hydrogel, was designed for repairing rabbit osteochondral defect. In vitro experiments showed that rabbit bone marrow stem cells migrated into and have higher affinity toward the functional scaffolding system DCM-RAD/SKP than the control scaffolds. One week after in vivo implantation, the functional scaffolding system DCM-RAD/SKP facilitated the recruitment of endogenous mesenchymal stem cells within the defect site. Moreover, gene expression analysis indicated that the DCM-RAD/SKP promoted chondrogenesis of the recruited cells. In vivo results showed that the DCM-RAD/SKP achieved superior hyaline-like cartilage repair and successful subchondral bone reconstruction. By contrast, the control groups mostly led to fibrous tissue repair. These findings indicate that the DCM-RAD/SKP can recruit endogenous stem cells into the site of cartilage injury and promote differentiation of the infiltrating cells into the chondrogenic lineage, holding great potential as a one-step surgery strategy for cartilage repair.
Collapse
Affiliation(s)
- Xun Sun
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
- Department of Orthopedics , Tianjin Hospital , No. 406 Jiefang Nan Road , Tianjin 300211 , P. R. China
| | - Heyong Yin
- Department of Surgery , Ludwig-Maximilians-University , Nussbaumstr. 20 , Munich 80336 , Germany
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Jiaju Lu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Xuezhen Shen
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Changfeng Lu
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - He Tang
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Wen Yu
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Yun Zhu
- School of Biomedical Sciences , University of Hong Kong , No. 21 Sassoon Road , Pokfulam, 999077 Hong Kong , P. R. China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Aiyuan Wang
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Shibi Lu
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital , Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries , PLA, No. 28 Fuxing Road , Beijing 100853 , P. R. China
| |
Collapse
|
10
|
Abstract
Tissue engineering has progressed tremendously over recent decades through the generation of functional tissue analogs. Traditional approaches based on seeding cells into scaffold are limited in their capacity to produce tissues with precise biomimetic properties. Three-dimensional (3D) bioprinting is one kind of fabrication technology used to precisely dispense cell-laden biomaterials for the construction of functional tissues or organs. In recent years, much research progress has been made in 3D bioprinting technology and its application in generating tissue analogs, including skin, heart valves, blood vessels, bone, and cardiac tissue. However, it still faces many technical challenges. In this review, we introduce the current progress in 3D bioprinting technology and focus on biomaterials and their potential applications in regenerative medicine and drug discovery. Current challenges are also discussed.
Collapse
Affiliation(s)
- Shiqing Zhang
- 1 Center for Medical Device Evaluation, China Food and Drug Administration (CFDA), Beijing, People's Republic of China
| | - Haibin Wang
- 2 College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Elder S, Chenault H, Gloth P, Webb K, Recinos R, Wright E, Moran D, Butler J, Borazjani A, Cooley A. Effects of antigen removal on a porcine osteochondral xenograft for articular cartilage repair. J Biomed Mater Res A 2018; 106:2251-2260. [PMID: 29577591 DOI: 10.1002/jbm.a.36411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 11/06/2022]
Abstract
Given the limited availability of fresh osteochondral allografts and uncertainty regarding performance of decellularized allografts, this study was undertaken as part of an effort to develop an osteochondral xenograft for articular cartilage repair. The purpose was to evaluate a simple antigen removal procedure based mainly on treatment with SDS and nucleases. Histology demonstrated a preservation of collagenous structure and removal of most nuclei. Immunohistochemistry revealed the apparent retention of α-Gal within osteocyte lacunae unless the tissue underwent an additional α-galactosidase processing step. Cytoplasmic protein was completely removed as shown by Western blot. Quantitatively, the antigen removal protocol was found to extract approximately 90% of DNA from cartilage and bone, and it extracted over 80% of glycosaminoglycan from cartilage. Collagen content was not affected. Mechanical testing of cartilage and bone were performed separately, in addition to testing the cartilage-bone interface, and the main effect of antigen removal was an increase in cartilage hydraulic permeability. In vivo immunogenicity was assessed by subcutaneous implantation into DBA/1 J mice, and the response was typical of a foreign body rather than immune reaction. Thus, an osteochondral xenograft produced as described has the potential for further development into a treatment for osteochondral lesions in the human knee. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2251-2260, 2018.
Collapse
Affiliation(s)
- Steve Elder
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Hudson Chenault
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Paul Gloth
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Katie Webb
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Ruth Recinos
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Emily Wright
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - Dalton Moran
- Department of Agricultural and Biological Engineering, James Worth Bagley College of Engineering, Mississippi State University, Starkville, Mississippi
| | - James Butler
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi
| | - Abdolsamad Borazjani
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi
| | - Avery Cooley
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi
| |
Collapse
|
12
|
Sage EK, Thakrar RM, Janes SM. Genetically modified mesenchymal stromal cells in cancer therapy. Cytotherapy 2017; 18:1435-1445. [PMID: 27745603 PMCID: PMC5082580 DOI: 10.1016/j.jcyt.2016.09.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022]
Abstract
The cell therapy industry has grown rapidly over the past 3 decades, and multiple clinical trials have been performed to date covering a wide range of diseases. The most frequently used cell is mesenchymal stromal cells (MSCs), which have been used largely for their anti-inflammatory actions and in situations of tissue repair and although they have demonstrated a good safety profile, their therapeutic efficacy has been limited. In addition to these characteristics MSCs are being used for their homing and engraftment properties and have been genetically modified to enable targeted delivery of a variety of therapeutic agents in both malignant and nonmalignant conditions. This review discusses the science and technology behind genetically modified MSC therapy in malignant disease and how potential problems have been overcome to enable their use in two novel clinical trials in metastatic gastrointestinal and lung cancer.
Collapse
Affiliation(s)
- Elizabeth K Sage
- Lungs for Living Research Centre, UCL Respiratory, Rayne Institute, University College London, London, United Kingdom
| | - Ricky M Thakrar
- Lungs for Living Research Centre, UCL Respiratory, Rayne Institute, University College London, London, United Kingdom; Department of Thoracic Medicine, University College London Hospital, London, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Rayne Institute, University College London, London, United Kingdom; Department of Thoracic Medicine, University College London Hospital, London, United Kingdom.
| |
Collapse
|
13
|
Cao Z, Bai Y, Liu C, Dou C, Li J, Xiang J, Zhao C, Xie Z, Xiang Q, Dong S. Hypertrophic differentiation of mesenchymal stem cells is suppressed by xanthotoxin via the p38‑MAPK/HDAC4 pathway. Mol Med Rep 2017; 16:2740-2746. [PMID: 28677757 PMCID: PMC5548016 DOI: 10.3892/mmr.2017.6886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 06/08/2017] [Indexed: 12/20/2022] Open
Abstract
Chondrocyte hypertrophy is a physiological process in endochondral ossification. However, the hypertrophic-like alterations of chondrocytes at the articular surface may result in osteoarthritis (OA). In addition, the generation of fibrocartilage with a decreased biological function in tissue engineered cartilage, has been attributed to chondrocyte hypertrophy. Therefore, suppressing chondrocyte hypertrophy in OA and the associated regeneration of non-active cartilage is of primary concern. The present study examined the effects of xanthotoxin (XAT), which is classified as a furanocoumarin, on chondrocyte hypertrophic differentiation of mesenchymal stem cells. Following XAT treatment, the expression levels of genes associated with chondrocyte hypertrophy were detected via immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction. The results revealed that XAT inhibited the expression of various chondrocyte hypertrophic markers, including runt related transcription factor 2 (Runx2), matrix metalloproteinase 13 and collagen type X α1 chain. Further exploration indicated that XAT reduced the activation of p38-mitogen activated protein kinase and then increased the expression of histone deacetylase 4 to suppress Runx2. The findings indicated that XAT maintained the chondrocyte phenotype in regenerated cartilage and therefore may exhibit promise as a potential drug for the treatment of OA in the future.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Anatomy, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yun Bai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chuan Liu
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, P.R. China
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jianmei Li
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, P.R. China
| | - Junyu Xiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chunrong Zhao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhao Xie
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Qiang Xiang
- Department of Emergency, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
14
|
Mueller AJ, Tew SR, Vasieva O, Clegg PD, Canty-Laird EG. A systems biology approach to defining regulatory mechanisms for cartilage and tendon cell phenotypes. Sci Rep 2016; 6:33956. [PMID: 27670352 PMCID: PMC5037390 DOI: 10.1038/srep33956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
Phenotypic plasticity of adult somatic cells has provided emerging avenues for the development of regenerative therapeutics. In musculoskeletal biology the mechanistic regulatory networks of genes governing the phenotypic plasticity of cartilage and tendon cells has not been considered systematically. Additionally, a lack of strategies to effectively reproduce in vitro functional models of cartilage and tendon is retarding progress in this field. De- and redifferentiation represent phenotypic transitions that may contribute to loss of function in ageing musculoskeletal tissues. Applying a systems biology network analysis approach to global gene expression profiles derived from common in vitro culture systems (monolayer and three-dimensional cultures) this study demonstrates common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. Furthermore, evidence of convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells, and the expression of key developmental markers, challenges the physiological relevance of this culture system. The study also suggests that oxidative stress and PI3K signalling pathways are key modulators of in vitro phenotypes for cells of musculoskeletal origin.
Collapse
Affiliation(s)
- A. J. Mueller
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
| | - S. R. Tew
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - O. Vasieva
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown St., Liverpool, L69 7ZB, United Kingdom
| | - P. D. Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - E. G. Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| |
Collapse
|
15
|
Xing D, Chen J, Yang J, Heng BC, Ge Z, Lin J. Perspectives on Animal Models Utilized for the Research and Development of Regenerative Therapies for Articular Cartilage. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40610-016-0038-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|