1
|
The potential for vaccines against scour worms of small ruminants. Int J Parasitol 2020; 50:533-553. [PMID: 32569640 DOI: 10.1016/j.ijpara.2020.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
This review addresses the research landscape regarding vaccines against scour worms, particularly Trichostrongylus spp. and Teladorsagia circumcincta. The inability of past research to deliver scour-worm vaccines with reliable and reproducible efficacy has been due in part to gaps in knowledge concerning: (i) host-parasite interactions leading to development of type-2 immunity, (ii) definition of an optimal suite of parasite antigens, and (iii) rational formulation and administration to induce protective immunity against gastrointestinal nematodes (GIN) at the site of infestation. Recent 'omics' developments enable more systematic analyses. GIN genomes are reaching completion, facilitating "reverse vaccinology" approaches that have been used successfully for the Rhipicephalus australis vaccine for cattle tick, while methods for gene silencing and editing in GIN enable identification and validation of potential vaccine antigens. We envisage that any efficacious scour worm vaccine(s) would be adopted similarly to "Barbervax™" within integrated parasite management schemes. Vaccines would therefore effectively parallel the use of resistant animals, and reduce the frequency of drenching and pasture contamination. These aspects of integration, efficacy and operation require updated models and validation in the field. The conclusion of this review outlines an approach to facilitate an integrated research program.
Collapse
|
2
|
Lacasta A, Mwalimu S, Kibwana E, Saya R, Awino E, Njoroge T, Poole J, Ndiwa N, Pelle R, Nene V, Steinaa L. Immune parameters to p67C antigen adjuvanted with ISA206VG correlate with protection against East Coast fever. Vaccine 2018; 36:1389-1397. [PMID: 29429808 PMCID: PMC5835154 DOI: 10.1016/j.vaccine.2018.01.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/18/2018] [Accepted: 01/28/2018] [Indexed: 11/25/2022]
Abstract
Three doses of p67C antigen generated stronger immune responses than two doses. Antibody titers and CD4+ T-cell proliferation correlated with protection against ECF. The number of doses could not be reduced from three to two without compromising the protection.
East Coast fever (ECF) is a lymphoproliferative disease caused by the tick-transmitted protozoan parasite Theileria parva. ECF is one of the most serious cattle tick-borne diseases in Sub-Saharan Africa. We have previously demonstrated that three doses of the C-terminal part of the sporozoite protein p67 (p67C) adjuvanted with ISA206VG confers partial protection against ECF at a herd level. We have tested the efficacy of two doses of this experimental vaccine, as reducing the vaccination regimen would facilitate its deployment in the field. We reconfirm that three antigen doses gave a significant level of protection to severe disease (46%, ECF score < 6) when compared with the control group, while two doses did not (23%). Animals receiving three doses of p67C developed higher antibody titers and CD4+ T-cell proliferation indices, than those which received two doses. A new panel of immune parameters were tested in order to identify factors correlating with protection: CD4+ proliferation index, total IgG, IgG1, IgG2 and IgM half maximal titers and neutralization capacity of the sera with and without complement. We show that some of the cellular and humoral immune responses provide preliminary correlates of protection.
Collapse
Affiliation(s)
- Anna Lacasta
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Stephen Mwalimu
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Elisabeth Kibwana
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Rosemary Saya
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Elias Awino
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Thomas Njoroge
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Jane Poole
- Research Methods Group, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya.
| | - Nicholas Ndiwa
- Research Methods Group, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, Kenya.
| | - Roger Pelle
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi, Kenya.
| | - Vishvanath Nene
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| | - Lucilla Steinaa
- Animal and Human Health (AHH), International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya.
| |
Collapse
|