1
|
Spiliopoulou A, Lekkou A, Vrioni G, Leonidou L, Cogliati M, Christofidou M, Marangos M, Kolonitsiou F, Paliogianni F. Fungemia due to rare non-Candida yeasts between 2018 and 2021 in a Greek tertiary care university hospital. J Mycol Med 2023; 33:101386. [PMID: 37031651 DOI: 10.1016/j.mycmed.2023.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
INTRODUCTION Non-Candida yeasts, although rare, are increasingly encountered and recognized as a growing threat. METHODS Cases of bloodstream infections (BSIs) due to non-Candida yeasts (NCYs) during the last four years (2018-2021) are presented. RESULTS During the study period, 16 cases caused by non-Candida yeasts out of 400 cases of yeast BSIs were recorded, corresponding to an incidence of 4%. Yeasts that were isolated included Cryptococcus spp (4 isolates-25%), Rhodotorula mucilaginosa (2 isolates-12.5%), Trichosporon asahii (7 isolates-43.75%) and Saccharomyces cerevisiae (3 isolates-18.75%). Predisposing factors involved mostly hematological malignancies, long term hospitalization or major surgical interventions. Most isolates, 15 out of 16 were susceptible to amphotericin B. Voriconazole was the most active azole in vitro. All isolates, except Saccharomyces spp., were resistant to echinocandins. DISCUSSION Early recognition of rare yeasts as causative agents of BSIs and prompt initiation of appropriate treatment based on current guidelines and expertise remain crucial in efficient patient management.
Collapse
Affiliation(s)
| | - Alexandra Lekkou
- Dept of Infectious Diseases, University Hospital of Patras, Patras, Greece
| | - Georgia Vrioni
- Dept of Microbiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Lydia Leonidou
- Dept of Infectious Diseases, University Hospital of Patras, Patras, Greece
| | - Massimo Cogliati
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | | | - Markos Marangos
- Dept of Infectious Diseases, University Hospital of Patras, Patras, Greece
| | | | | |
Collapse
|
2
|
Activity of Novel Ultrashort Cyclic Lipopeptides against Biofilm of Candida albicans Isolated from VVC in the Ex Vivo Animal Vaginal Model and BioFlux Biofilm Model-A Pilot Study. Int J Mol Sci 2022; 23:ijms232214453. [PMID: 36430935 PMCID: PMC9694474 DOI: 10.3390/ijms232214453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, clinicians and doctors have become increasingly interested in fungal infections, including those affecting the mucous membranes. Vulvovaginal candidiasis (VVC) is no exception. The etiology of this infection remains unexplained to this day, as well as the role and significance of asymptomatic vaginal Candida colonization. There are also indications that in the case of VVC, standard methods of determining drug susceptibility to antifungal drugs may not have a real impact on their clinical effectiveness-which would explain, among other things, treatment failures and relapse rates. The aim of the study was to verify the promising results obtained previously in vitro using standard methods, in a newly developed ex vivo model, using tissue fragments of the mouse vagina. The main goal of the study was to determine whether the selected ultrashort cyclic lipopeptides (USCLs) and their combinations with fluconazole at specific concentrations are equally effective against Candida forming a biofilm directly on the surface of the vaginal epithelium. In addition, the verification was also performed with the use of another model for the study of microorganisms (biofilms) in vitro-the BioFlux system, under microfluidic conditions. The obtained results indicate the ineffectiveness of the tested substances ex vivo at concentrations eradicating biofilm in vitro. Nevertheless, the relatively most favorable and promising results were still obtained in the case of combination therapy-a combination of low concentrations of lipopeptides (mainly linear analogs) with mycostatic fluconazole. Additionally, using BioFlux, it was not possible to confirm the previously obtained results. However, an inhibiting effect of the tested lipopeptides on the development of biofilm under microfluidic conditions was demonstrated. There is an incompatibility between the classic in vitro methods, the newer BioFlux method of biofilm testing, offering many advantages postulated elsewhere, and the ex vivo method. This incompatibility is another argument for the need, on the one hand, to intensify research on the pathomechanism of VVC, and, on the other hand, to verify and maybe modify the standard methods used in the determination of Candida susceptibility.
Collapse
|
3
|
The δ subunit of F 1F o-ATP synthase is required for pathogenicity of Candida albicans. Nat Commun 2021; 12:6041. [PMID: 34654833 PMCID: PMC8519961 DOI: 10.1038/s41467-021-26313-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022] Open
Abstract
Fungal infections, especially candidiasis and aspergillosis, claim a high fatality rate. Fungal cell growth and function requires ATP, which is synthesized mainly through oxidative phosphorylation, with the key enzyme being F1Fo-ATP synthase. Here, we show that deletion of the Candida albicans gene encoding the δ subunit of the F1Fo-ATP synthase (ATP16) abrogates lethal infection in a mouse model of systemic candidiasis. The deletion does not substantially affect in vitro fungal growth or intracellular ATP concentrations, because the decrease in oxidative phosphorylation-derived ATP synthesis is compensated by enhanced glycolysis. However, the ATP16-deleted mutant displays decreased phosphofructokinase activity, leading to low fructose 1,6-bisphosphate levels, reduced activity of Ras1-dependent and -independent cAMP-PKA pathways, downregulation of virulence factors, and reduced pathogenicity. A structure-based virtual screening of small molecules leads to identification of a compound potentially targeting the δ subunit of fungal F1Fo-ATP synthases. The compound induces in vitro phenotypes similar to those observed in the ATP16-deleted mutant, and protects mice from succumbing to invasive candidiasis. Our findings indicate that F1Fo-ATP synthase δ subunit is required for C. albicans lethal infection and represents a potential therapeutic target.
Collapse
|
4
|
Kuiper JWP, Hogervorst JMA, Herpers BL, Bakker AD, Klein-Nulend J, Nolte PA, Krom BP. The novel endolysin XZ.700 effectively treats MRSA biofilms in two biofilm models without showing toxicity on human bone cells in vitro. BIOFOULING 2021; 37:184-193. [PMID: 33615928 DOI: 10.1080/08927014.2021.1887151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
In this in vitro study the effect of XZ.700, a new endolysin, on methicillin resistant Staphylococcus aureus (MRSA) biofilms grown on titanium was evaluated. Biofilms of S. aureus USA300 were grown statically and under flow, and treatment with XZ.700 was compared with povidone-iodine (PVP-I) and gentamicin. To evaluate the cytotoxic effects of XZ.700 and derived biofilm lysates, human osteocyte-like cells were exposed to biofilm supernatants, and metabolism and proliferation were quantified. XZ.700 showed a significant, concentration dependent reduction in biofilm viability, compared with carrier controls. Metabolism and proliferation of human osteocyte-like cells were not affected by XZ.700 or lysates, unlike PVP-I and gentamicin lysates which significantly inhibited proliferation. Using time-lapse microscopy, rapid biofilm killing and removal was observed for XZ.700. In comparison, PVP-I and gentamicin showed slower biofilm killing, with no apparent biofilm removal. In conclusion, XZ.700 reduced MRSA biofilms, especially under flow condition, without toxicity for surrounding bone cells.
Collapse
Affiliation(s)
- Jesse W P Kuiper
- Department of Orthopedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Bjorn L Herpers
- Department of Medical Microbiology, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Peter A Nolte
- Department of Orthopedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Potential of Novel Bacterial Cellulose Dressings Chemisorbed with Antiseptics for the Treatment of Oral Biofilm Infections. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infections of the oral cavity are caused by multicellular communities of microbes, referred to as biofilms. Due to the high tolerance of biofilms to antibiotics and specific conditions within the oral cavity, there is an ongoing search for carriers that are able to deliver high local concentrations of potent antimicrobials that can eradicate pathogenic biofilms. Bacterial cellulose, owing to its high flexibility, absorbance, and release potential, meets these demands. In this work we chemisorbed bacterial cellulose with antiseptics containing povidone-iodine or polihexanide and analyzed their ability to eradicate in vitro biofilms formed by oral pathogens, such as Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Candida albicans, Streptococcus mutans, Staphylococcus aureus, and Pseudomonas aeruginosa. In tests performed by means of standard laboratory methods and with a long contact time (24 h), all antiseptics released from the cellulose dressings displayed a very high antibiofilm efficacy. On the other hand, when conditions imitating the oral cavity were used and cellulose dressings were applied for a 0.5–1 h contact time, the antiseptics released from the dressings displayed lower, though still acceptable, activity. Our findings indicate that besides species-specific resistance to particular antiseptic agents, environmental and experimental settings play an essential role in outcomes. Finally, in a proof-of-concept experiment performed in an oral cavity typodont model, we demonstrated the high flexibility and adhesiveness of antiseptic-containing cellulose dressings. Our novel findings, if developed in further studies, may lead to the introduction of new types of dressings that are able to efficiently deal with biofilm infections of the oral cavity.
Collapse
|
6
|
Song Y, Li S, Zhao Y, Zhang Y, Lv Y, Jiang Y, Wang Y, Li D, Zhang H. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation. Int J Med Microbiol 2019; 309:151330. [DOI: 10.1016/j.ijmm.2019.151330] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023] Open
|
7
|
Gulati M, Lohse MB, Ennis CL, Gonzalez RE, Perry AM, Bapat P, Arevalo AV, Rodriguez DL, Nobile CJ. In Vitro Culturing and Screening of Candida albicans Biofilms. ACTA ACUST UNITED AC 2018; 50:e60. [PMID: 29995344 DOI: 10.1002/cpmc.60] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Candida albicans is a normal member of the human microbiota that asymptomatically colonizes healthy individuals, however it is also an opportunistic pathogen that can cause severe infections, especially in immunocompromised individuals. The medical impact of C. albicans depends, in part, on its ability to form biofilms, communities of adhered cells encased in an extracellular matrix. Biofilms can form on both biotic and abiotic surfaces, such as tissues and implanted medical devices. Once formed, biofilms are highly resistant to antifungal agents and the host immune system, and can act as a protected reservoir to seed disseminated infections. Here, we present several in vitro biofilm protocols, including protocols that are optimized for high-throughput screening of mutant libraries and antifungal compounds. We also present protocols to examine specific stages of biofilm development and protocols to evaluate interspecies biofilms that C. albicans forms with interacting microbial partners. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California
| | - Matthew B Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California.,Department of Biology, BioSynesis, Inc., San Francisco, California
| | - Craig L Ennis
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California
| | - Ruth E Gonzalez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California
| | - Austin M Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California
| | - Priyanka Bapat
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California
| | - Ashley Valle Arevalo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California
| | - Diana L Rodriguez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, California
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California
| |
Collapse
|
8
|
Basak A, Abouelhassan Y, Zuo R, Yousaf H, Ding Y, Huigens RW. Antimicrobial peptide-inspired NH125 analogues: bacterial and fungal biofilm-eradicating agents and rapid killers of MRSA persisters. Org Biomol Chem 2018; 15:5503-5512. [PMID: 28534905 DOI: 10.1039/c7ob01028a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During microbial infection, antimicrobial peptides are utilized by the immune response to rapidly eradicate microbial pathogens through the destruction of cellular membranes. Inspired by antimicrobial peptides, quaternary ammonium cationic (QAC) compounds have emerged as agents capable of destroying bacterial membranes leading to rapid bacterial death, including the eradication of persistent, surface-attached bacterial biofilms. NH125, an imidazolium cation with a sixteen membered fatty tail, was recently reported to eradicate persister cells and was our starting point for the development of novel antimicrobial agents. Here, we describe the design, chemical synthesis and biological investigations of a collection of 30 diverse NH125 analogues which provided critical insights into structural features that are important for antimicrobial activities in this class. From these studies, multiple NH125 analogues were identified to possess potent antibacterial and antifungal activities, eradicate both bacterial and fungal biofilms and rapidly eradicate MRSA persister cells in stationary phase. NH125 analogues also demonstrated more rapid persister cell killing activities against MRSA when tested alongside a panel of diverse membrane-active agents, including BAC-16 and daptomycin. NH125 analogues could have a significant impact on persister- and biofilm-related problems in numerous biomedical applications.
Collapse
Affiliation(s)
- Akash Basak
- Department of Chemistry, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Gulati M, Ennis CL, Rodriguez DL, Nobile CJ. Visualization of Biofilm Formation in Candida albicans Using an Automated Microfluidic Device. J Vis Exp 2017. [PMID: 29286435 DOI: 10.3791/56743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is the most common fungal pathogen of humans, causing about 15% of hospital-acquired sepsis cases. A major virulence attribute of C. albicans is its ability to form biofilms, structured communities of cells attached to biotic and abiotic surfaces. C. albicans biofilms can form on host tissues, such as mucosal layers, and on medical devices, such as catheters, pacemakers, dentures, and joint prostheses. Biofilms pose significant clinical challenges because they are highly resistant to physical and chemical perturbations, and can act as reservoirs to seed disseminated infections. Various in vitro assays have been utilized to study C. albicans biofilm formation, such as microtiter plate assays, dry weight measurements, cell viability assays, and confocal scanning laser microscopy. All of these assays are single end-point assays, where biofilm formation is assessed at a specific time point. Here, we describe a protocol to study biofilm formation in real-time using an automated microfluidic device under laminar flow conditions. This method allows for the observation of biofilm formation as the biofilm develops over time, using customizable conditions that mimic those of the host, such as those encountered in vascular catheters. This protocol can be used to assess the biofilm defects of genetic mutants as well as the inhibitory effects of antimicrobial agents on biofilm development in real-time.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced
| | - Craig L Ennis
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced
| | - Diana L Rodriguez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced;
| |
Collapse
|
10
|
Bikker FJ, Hoogenkamp MA, Malhaoui A, Nazmi K, Neilands J, Krom BP. Phytosphingosine Prevents the Formation of Young Salivary Biofilms in vitro. Caries Res 2017; 52:7-13. [DOI: 10.1159/000480712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022] Open
Abstract
Dental biofilms are formed in a multistep process that is initiated by the adhesion of oral bacteria to the dental hard surface. As dental biofilms are associated with oral diseases their control is necessary in order to maintain oral health. Recently, it was revealed that phytosphingosine (PHS)-treated hydroxyapatite discs showed anti-adhesive activity in a static in vitro biofilm model against Streptococcus mutans. The goal of the present study was to further unravel the anti-adhesive and anti-biofilm properties of PHS in both static and dynamic in vitro biofilm models against a full salivary inoculum. After 3 h under static conditions, bacterial adherence on PHS-treated cover glass slides was reduced by 60% compared to the untreated surface. After 6 and 24 h under static conditions, no significant differences in bacterial adherence were observed between PHS-treated and untreated cover glass slides. However, under dynamic conditions, i.e., the presence of shear forces, virtually no bacterial adherence was observed for up to 16 h on PHS-coated surfaces. Besides, PHS showed a strong bactericidal activity on salivary biofilms. Treatment of a 3- and 6-h statically grown biofilm resulted in a 99 and 94% reduction of viable cells, respectively, which was effectuated within minutes. In principle, these anti-adherence and anti-biofilm properties make PHS a promising candidate ingredient for use in oral care products aimed at oral microbial control.
Collapse
|
11
|
Han Q, Song X, Zhang Z, Fu J, Wang X, Malakar PK, Liu H, Pan Y, Zhao Y. Removal of Foodborne Pathogen Biofilms by Acidic Electrolyzed Water. Front Microbiol 2017. [PMID: 28638370 PMCID: PMC5461821 DOI: 10.3389/fmicb.2017.00988] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Biofilms, which are complex microbial communities embedded in the protective extracellular polymeric substances (EPS), are difficult to remove in food production facilities. In this study, the use of acidic electrolyzed water (AEW) to remove foodborne pathogen biofilms was evaluated. We used a green fluorescent protein-tagged Escherichia coli for monitoring the efficiency of AEW for removing biofilms, where under the optimal treatment conditions, the fluorescent signal of cells in the biofilm disappeared rapidly and the population of biofilm cells was reduced by more than 67%. Additionally, AEW triggered EPS disruption, as indicated by the deformation of the carbohydrate C-O-C bond and deformation of the aromatic rings in the amino acids tyrosine and phenylalanine. These deformations were identified by EPS chemical analysis and Raman spectroscopic analysis. Scanning electron microscopy (SEM) images confirmed that the breakup and detachment of biofilm were enhanced after AEW treatment. Further, AEW also eradicated biofilms formed by both Gram-negative bacteria (Vibrio parahaemolyticus) and Gram-positive bacteria (Listeria monocytogenes) and was observed to inactivate the detached cells which are a potential source of secondary pollution. This study demonstrates that AEW could be a reliable foodborne pathogen biofilm disrupter and an eco-friendly alternative to sanitizers traditionally used in the food industry.
Collapse
Affiliation(s)
- Qiao Han
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Xueying Song
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Jiaojiao Fu
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Xu Wang
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of AgricultureShanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and PreservationShanghai, China.,Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean UniversityShanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of AgricultureShanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and PreservationShanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of AgricultureShanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and PreservationShanghai, China
| |
Collapse
|
12
|
Costa-Orlandi CB, Sardi JCO, Pitangui NS, de Oliveira HC, Scorzoni L, Galeane MC, Medina-Alarcón KP, Melo WCMA, Marcelino MY, Braz JD, Fusco-Almeida AM, Mendes-Giannini MJS. Fungal Biofilms and Polymicrobial Diseases. J Fungi (Basel) 2017; 3:jof3020022. [PMID: 29371540 PMCID: PMC5715925 DOI: 10.3390/jof3020022] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/19/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
Biofilm formation is an important virulence factor for pathogenic fungi. Both yeasts and filamentous fungi can adhere to biotic and abiotic surfaces, developing into highly organized communities that are resistant to antimicrobials and environmental conditions. In recent years, new genera of fungi have been correlated with biofilm formation. However, Candida biofilms remain the most widely studied from the morphological and molecular perspectives. Biofilms formed by yeast and filamentous fungi present differences, and studies of polymicrobial communities have become increasingly important. A key feature of resistance is the extracellular matrix, which covers and protects biofilm cells from the surrounding environment. Furthermore, to achieve cell–cell communication, microorganisms secrete quorum-sensing molecules that control their biological activities and behaviors and play a role in fungal resistance and pathogenicity. Several in vitro techniques have been developed to study fungal biofilms, from colorimetric methods to omics approaches that aim to identify new therapeutic strategies by developing new compounds to combat these microbial communities as well as new diagnostic tools to identify these complex formations in vivo. In this review, recent advances related to pathogenic fungal biofilms are addressed.
Collapse
Affiliation(s)
- Caroline B Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Janaina C O Sardi
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba SP 13414-018, Brazil.
| | - Nayla S Pitangui
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Haroldo C de Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Liliana Scorzoni
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Mariana C Galeane
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Kaila P Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Wanessa C M A Melo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Mônica Y Marcelino
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Jaqueline D Braz
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Maria José S Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| |
Collapse
|
13
|
Assessment and Optimizations of Candida albicans In Vitro Biofilm Assays. Antimicrob Agents Chemother 2017; 61:AAC.02749-16. [PMID: 28289028 DOI: 10.1128/aac.02749-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/03/2017] [Indexed: 01/07/2023] Open
Abstract
Candida albicans biofilms have a significant medical impact due to their rapid growth on implanted medical devices, their resistance to antifungal drugs, and their ability to seed disseminated infections. Biofilm assays performed in vitro allow for rapid, high-throughput screening of gene deletion libraries or antifungal compounds and typically serve as precursors to in vivo studies. Here, we compile and discuss the protocols for several recently published C. albicansin vitro biofilm assays. We also describe improved versions of these protocols as well as novel in vitro assays. Finally, we consider some of the advantages and disadvantages of these different types of assays.
Collapse
|
14
|
Li SX, Song YJ, Zhang YS, Wu HT, Guo H, Zhu KJ, Li DM, Zhang H. Mitochondrial Complex V α Subunit Is Critical for Candida albicans Pathogenicity through Modulating Multiple Virulence Properties. Front Microbiol 2017; 8:285. [PMID: 28280492 PMCID: PMC5322696 DOI: 10.3389/fmicb.2017.00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/13/2017] [Indexed: 11/22/2022] Open
Abstract
The α subunit (ATP1) is a vital component of mitochondrial complex V which counts for the majority of cellular ATP production in a living organism. Nevertheless, how the α subunit influences other cellular processes such as pathogenicity in Candida albicans remains poorly understood. To address this question, ATP1 mutant (atp1Δ/Δ) and the gene-reconstituted strain (atp1Δ/ATP1) have been constructed in this study and their pathogenicity-related traits are compared to those of wild type (WT). In a murine model of disseminated candidiasis, atp1Δ/Δ infected mice have a significantly higher survival rate and experience a lower fungal burden in tissues. In in vitro studies atp1Δ/Δ lose a capability to damage or destroy macrophages and endothelial cells. Furthermore, atp1Δ/Δ is not able to grow under either glucose-denial conditions or high H2O2 conditions, both of which are associated with the potency of the macrophages to kill C. albicans. Defects in filamentation and biofilm formation may impair the ability of atp1Δ/Δ to penetrate host cells and establish robust colonies in the host tissues. In concert with these pathogenic features, intracellular ATP levels of atp1Δ/Δ can drop to 1/3 of WT level. These results indicate that the α subunit of Complex V play important roles in C. albicans pathogenicity.
Collapse
Affiliation(s)
- Shui-Xiu Li
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Yan-Jun Song
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Yi-Shan Zhang
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Hao-Tian Wu
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Hui Guo
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Kun-Ju Zhu
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Dong-Mei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center Washington, DC, USA
| | - Hong Zhang
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| |
Collapse
|
15
|
In vitro antifungal and antibiofilm activities of halogenated quinoline analogues against Candida albicans and Cryptococcus neoformans. Int J Antimicrob Agents 2016; 48:208-11. [DOI: 10.1016/j.ijantimicag.2016.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 11/18/2022]
|