1
|
Ye K, Liu X, Li D, Gao L, Zheng K, Qu J, Xing N, Yang F, Liu B, Li A, Pang Q. Extracellular matrix-regulator MMPA is required for the orderly proliferation of neoblasts and differentiation of ectodermal progenitor cells in the planarian Dugesia japonica. Biochem Biophys Res Commun 2023; 659:1-9. [PMID: 37030019 DOI: 10.1016/j.bbrc.2023.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023]
Abstract
Matrix metalloproteinases (MMPs) are members of a family of zinc-dependent metallopeptidase proteins that are widely found in plants, animals, and microorganisms. As the regulators of the extracellular matrix and basement membrane, MMPs play an important role in embryogenesis, development, innate immunity, and regeneration. However, the function of MMP family in planarian, a model for regeneration research, is still ambiguous. Here, we cloned 5 MMPs genes from Dugesia japonica and found that DjMMPA was associated with the process of regeneration, neoblasts cell maintenance confusion and destruction. Loss of DjMMPA led to homeostasis confusion and eventually death, owing to neoblasts proliferation disorder. Additionally, DjMMPA RNAi-treated animals had impaired regeneration after amputation. Furthermore, knockdown of DjMMPA had noticeable defects in cell differentiation of ectoderm, especially in eyes and neural progenitor cells, possibly by inhibiting Wnt signaling. Our results suggest that extracellular matrix-regulator MMPA is required for the orderly proliferation of neoblasts and differentiation of ectodermal progenitor cells in the planarian, which provide valuable information for further explorations into the molecular mechanism of MMPS, stem cells, and regeneration.
Collapse
|
2
|
Zhang W, Han Q, Ding Y, Zhou H, Chen Z, Wang J, Xiang J, Song Z, Abbas M, Shi L. Bcl6 drives stem-like memory macrophages differentiation to foster tumor progression. Cell Mol Life Sci 2022; 80:14. [PMID: 36542153 PMCID: PMC9771855 DOI: 10.1007/s00018-022-04660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Cancer development is a long-lasting process during which macrophages play a pivotal role. However, how macrophages maintain their cellular identity, persistence, expanding and pro-tumor property during malignant progression remains elusive. Inspired by the recent report of the activation of stem cell-like self-renewal mechanism in mature macrophages, we postulate that intra-tumoral macrophages might be trained to assume stem-like properties and memory-like activity favoring cancer development. Herein we demonstrated that tumor infiltrating macrophages rapidly converted into the CD11b+F4/80+Ly6C-Bcl6+ phenotype, and adopted stem cell-like properties involving expression of stemness-related genes, long-term persistence and self-renewing. Importantly, Bcl6+ macrophages stably maintained cell identity, gene signature, metabolic profile, and pro-tumor property even after long-term culture in tumor-free medium, which were hence termed stem cell-like memory macrophages (SMMs). Mechanistically, we showed that transcriptional factor Bcl6 co-opted the demethylase Tet2 and the deacetylase SIRT1 to confer the epigenetic imprinting and mitochondrial metabolic traits to SMMs, bolstering the stability and longevity of trained immunity in tumor-associated macrophages (TAMs). Furthermore, tumor-derived redHMGB1 was identified as the priming signal, which, through TLR4 and mTOR/AKT pathway, induced Bcl6-driven program underpinning SMMs generation. Collectively, our study uncovers a distinct macrophage population with a hybrid of stem cell and memory cell properties, and unveils a regulatory mechanism that integrates transcriptional, epigenetic and metabolic pathways to promote long-lasting pro-tumor immunity.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Qin Han
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yina Ding
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
- Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, 310012, Zhejiang, China
| | - Huihui Zhou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaxin Xiang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zhengbo Song
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Muhammad Abbas
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310022, China
| | - Liyun Shi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310022, China.
| |
Collapse
|
3
|
Almazan EMP, Ryan JF, Rouhana L. Regeneration of Planarian Auricles and Reestablishment of Chemotactic Ability. Front Cell Dev Biol 2021; 9:777951. [PMID: 34901022 PMCID: PMC8662385 DOI: 10.3389/fcell.2021.777951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Detection of chemical stimuli is crucial for living systems and also contributes to quality of life in humans. Since loss of olfaction becomes more prevalent with aging, longer life expectancies have fueled interest in understanding the molecular mechanisms behind the development and maintenance of chemical sensing. Planarian flatworms possess an unsurpassed ability for stem cell-driven regeneration that allows them to restore any damaged or removed part of their bodies. This includes anteriorly-positioned lateral flaps known as auricles, which have long been thought to play a central role in chemotaxis. The contribution of auricles to the detection of positive chemical stimuli was tested in this study using Girardia dorotocephala, a North American planarian species known for its morphologically prominent auricles. Behavioral experiments staged under laboratory conditions revealed that removal of auricles by amputation leads to a significant decrease in the ability of planarians to find food. However, full chemotactic capacity is observed as early as 2 days post-amputation, which is days prior from restoration of auricle morphology, but correlative with accumulation of ciliated cells in the position of auricle regeneration. Planarians subjected to x-ray irradiation prior to auricle amputation were unable to restore auricle morphology, but were still able to restore chemotactic capacity. These results indicate that although regeneration of auricle morphology requires stem cells, some restoration of chemotactic ability can still be achieved in the absence of normal auricle morphology, corroborating with the initial observation that chemotactic success is reestablished 2-days post-amputation in our assays. Transcriptome profiles of excised auricles were obtained to facilitate molecular characterization of these structures, as well as the identification of genes that contribute to chemotaxis and auricle development. A significant overlap was found between genes with preferential expression in auricles of G. dorotocephala and genes with reduced expression upon SoxB1 knockdown in Schmidtea mediterranea, suggesting that SoxB1 has a conserved role in regulating auricle development and function. Models that distinguish between possible contributions to chemotactic behavior obtained from cellular composition, as compared to anatomical morphology of the auricles, are discussed.
Collapse
Affiliation(s)
| | - Joseph F. Ryan
- Whitney Laboratory of Marine Biosciences, University of Florida, St. Augustine, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, Dayton, OH, United States
| |
Collapse
|
4
|
Ziman B, Karabinis P, Barghouth P, Oviedo NJ. Sirtuin-1 regulates organismal growth by altering feeding behavior and intestinal morphology in planarians. J Cell Sci 2020; 133:jcs239467. [PMID: 32265271 PMCID: PMC7272345 DOI: 10.1242/jcs.239467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/19/2020] [Indexed: 01/03/2023] Open
Abstract
Nutrient availability upon feeding leads to an increase in body size in the planarian Schmidtea mediterranea However, it remains unclear how food consumption integrates with cell division at the organismal level. Here, we show that the NAD-dependent protein deacetylases sirtuins are evolutionarily conserved in planarians, and specifically demonstrate that the homolog of human sirtuin-1 (SIRT1) (encoded by Smed-Sirt-1), regulates organismal growth by impairing both feeding behavior and intestinal morphology. Disruption of Smed-Sirt-1 with RNAi or pharmacological inhibition of Sirtuin-1 leads to reduced animal growth. Conversely, enhancement of Sirtuin-1 activity with resveratrol accelerates growth. Differences in growth rates were associated with changes in the amount of time taken to locate food and overall food consumption. Furthermore, Smed-Sirt-1(RNAi) animals displayed reduced cell death and increased stem cell proliferation accompanied by impaired expression of intestinal lineage progenitors and reduced branching of the gut. Taken together, our findings indicate that Sirtuin-1 is a crucial metabolic hub capable of controlling animal behavior, tissue renewal and morphogenesis of the adult intestine.
Collapse
Affiliation(s)
- Benjamin Ziman
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Peter Karabinis
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Paul Barghouth
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
5
|
Herath S, Lobo D. Cross-inhibition of Turing patterns explains the self-organized regulatory mechanism of planarian fission. J Theor Biol 2020; 485:110042. [DOI: 10.1016/j.jtbi.2019.110042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
|
6
|
Characterizing the role of SWI/SNF-related chromatin remodeling complexes in planarian regeneration and stem cell function. Stem Cell Res 2018; 32:91-103. [DOI: 10.1016/j.scr.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/18/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
|
7
|
Shiroor DA, Bohr TE, Adler CE. Chemical Amputation and Regeneration of the Pharynx in the Planarian Schmidtea mediterranea. J Vis Exp 2018. [PMID: 29630058 DOI: 10.3791/57168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Planarians are flatworms that are extremely efficient at regeneration. They owe this ability to a large number of stem cells that can rapidly respond to any type of injury. Common injury models in these animals remove large amounts of tissue, which damages multiple organs. To overcome this broad tissue damage, we describe here a method to selectively remove a single organ, the pharynx, in the planarian Schmidtea mediterranea. We achieve this by soaking animals in a solution containing the cytochrome oxidase inhibitor sodium azide. Brief exposure to sodium azide causes extrusion of the pharynx from the animal, which we call "chemical amputation." Chemical amputation removes the entire pharynx, and generates a small wound where the pharynx attaches to the intestine. After extensive rinsing, all amputated animals regenerate a fully functional pharynx in approximately one week. Stem cells in the rest of the body drive regeneration of the new pharynx. Here, we provide a detailed protocol for chemical amputation, and describe both histological and behavioral methods to assess successful amputation and regeneration.
Collapse
Affiliation(s)
- Divya A Shiroor
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University
| | - Tisha E Bohr
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University
| | - Carolyn E Adler
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University;
| |
Collapse
|
8
|
Abnave P, Aboukhatwa E, Kosaka N, Thompson J, Hill MA, Aboobaker AA. Epithelial-mesenchymal transition transcription factors control pluripotent adult stem cell migration in vivo in planarians. Development 2017; 144:3440-3453. [PMID: 28893948 PMCID: PMC5665486 DOI: 10.1242/dev.154971] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/14/2017] [Indexed: 01/23/2023]
Abstract
Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1, snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo.
Collapse
Affiliation(s)
- Prasad Abnave
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - Ellen Aboukhatwa
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - Nobuyoshi Kosaka
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - James Thompson
- CRUK/MRC Oxford Institute for Radiation Oncology, ORCRB Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK
| | - Mark A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, ORCRB Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK
| | - A Aziz Aboobaker
- Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|