1
|
Franssen FME, Alter P, Bar N, Benedikter BJ, Iurato S, Maier D, Maxheim M, Roessler FK, Spruit MA, Vogelmeier CF, Wouters EFM, Schmeck B. Personalized medicine for patients with COPD: where are we? Int J Chron Obstruct Pulmon Dis 2019; 14:1465-1484. [PMID: 31371934 PMCID: PMC6636434 DOI: 10.2147/copd.s175706] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic airflow limitation is the common denominator of patients with chronic obstructive pulmonary disease (COPD). However, it is not possible to predict morbidity and mortality of individual patients based on the degree of lung function impairment, nor does the degree of airflow limitation allow guidance regarding therapies. Over the last decades, understanding of the factors contributing to the heterogeneity of disease trajectories, clinical presentation, and response to existing therapies has greatly advanced. Indeed, diagnostic assessment and treatment algorithms for COPD have become more personalized. In addition to the pulmonary abnormalities and inhaler therapies, extra-pulmonary features and comorbidities have been studied and are considered essential components of comprehensive disease management, including lifestyle interventions. Despite these advances, predicting and/or modifying the course of the disease remains currently impossible, and selection of patients with a beneficial response to specific interventions is unsatisfactory. Consequently, non-response to pharmacologic and non-pharmacologic treatments is common, and many patients have refractory symptoms. Thus, there is an ongoing urgency for a more targeted and holistic management of the disease, incorporating the basic principles of P4 medicine (predictive, preventive, personalized, and participatory). This review describes the current status and unmet needs regarding personalized medicine for patients with COPD. Also, it proposes a systems medicine approach, integrating genetic, environmental, (micro)biological, and clinical factors in experimental and computational models in order to decipher the multilevel complexity of COPD. Ultimately, the acquired insights will enable the development of clinical decision support systems and advance personalized medicine for patients with COPD.
Collapse
Affiliation(s)
- Frits ME Franssen
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
- Department of Medical Microbiology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | | | | | - Michael Maxheim
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Fabienne K Roessler
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Martijn A Spruit
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Emiel FM Wouters
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
5
|
Gomez-Cabrero D, Menche J, Vargas C, Cano I, Maier D, Barabási AL, Tegnér J, Roca J. From comorbidities of chronic obstructive pulmonary disease to identification of shared molecular mechanisms by data integration. BMC Bioinformatics 2016; 17:441. [PMID: 28185567 PMCID: PMC5133493 DOI: 10.1186/s12859-016-1291-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Deep mining of healthcare data has provided maps of comorbidity relationships between diseases. In parallel, integrative multi-omics investigations have generated high-resolution molecular maps of putative relevance for understanding disease initiation and progression. Yet, it is unclear how to advance an observation of comorbidity relations (one disease to others) to a molecular understanding of the driver processes and associated biomarkers. Results Since Chronic Obstructive Pulmonary disease (COPD) has emerged as a central hub in temporal comorbidity networks, we developed a systematic integrative data-driven framework to identify shared disease-associated genes and pathways, as a proxy for the underlying generative mechanisms inducing comorbidity. We integrated records from approximately 13 M patients from the Medicare database with disease-gene maps that we derived from several resources including a semantic-derived knowledge-base. Using rank-based statistics we not only recovered known comorbidities but also discovered a novel association between COPD and digestive diseases. Furthermore, our analysis provides the first set of COPD co-morbidity candidate biomarkers, including IL15, TNF and JUP, and characterizes their association to aging and life-style conditions, such as smoking and physical activity. Conclusions The developed framework provides novel insights in COPD and especially COPD co-morbidity associated mechanisms. The methodology could be used to discover and decipher the molecular underpinning of other comorbidity relationships and furthermore, allow the identification of candidate co-morbidity biomarkers. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1291-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Gomez-Cabrero
- Department of Medicine, Karolinska Institutet, Unit of Computational Medicine, Stockholm, 171 77, Sweden. .,Karolinska Institutet, Center for Molecular Medicine, Stockholm, 171 77, Sweden. .,Department of Medicine, Unit of Clinical Epidemiology, Karolinska University Hospital, Solna, L8, 17176, Sweden. .,Science for Life Laboratory, Solna, 17121, Sweden. .,Mucosal and Salivary Biology Division, King's College London Dental Institute, London, UK.
| | - Jörg Menche
- Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA, USA.,Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Center for Network Science, Central European University, Budapest, Hungary
| | - Claudia Vargas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Center for Biomedical Network Research in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Isaac Cano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Center for Biomedical Network Research in Respiratory Diseases (CIBERES), Madrid, Spain
| | | | - Albert-László Barabási
- Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA, USA.,Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Center for Network Science, Central European University, Budapest, Hungary.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jesper Tegnér
- Department of Medicine, Karolinska Institutet, Unit of Computational Medicine, Stockholm, 171 77, Sweden.,Karolinska Institutet, Center for Molecular Medicine, Stockholm, 171 77, Sweden.,Department of Medicine, Unit of Clinical Epidemiology, Karolinska University Hospital, Solna, L8, 17176, Sweden.,Science for Life Laboratory, Solna, 17121, Sweden
| | - Josep Roca
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain. .,Center for Biomedical Network Research in Respiratory Diseases (CIBERES), Madrid, Spain.
| | | |
Collapse
|
7
|
Auffray C, Balling R, Barroso I, Bencze L, Benson M, Bergeron J, Bernal-Delgado E, Blomberg N, Bock C, Conesa A, Del Signore S, Delogne C, Devilee P, Di Meglio A, Eijkemans M, Flicek P, Graf N, Grimm V, Guchelaar HJ, Guo YK, Gut IG, Hanbury A, Hanif S, Hilgers RD, Honrado Á, Hose DR, Houwing-Duistermaat J, Hubbard T, Janacek SH, Karanikas H, Kievits T, Kohler M, Kremer A, Lanfear J, Lengauer T, Maes E, Meert T, Müller W, Nickel D, Oledzki P, Pedersen B, Petkovic M, Pliakos K, Rattray M, I Màs JR, Schneider R, Sengstag T, Serra-Picamal X, Spek W, Vaas LAI, van Batenburg O, Vandelaer M, Varnai P, Villoslada P, Vizcaíno JA, Wubbe JPM, Zanetti G. Making sense of big data in health research: Towards an EU action plan. Genome Med 2016; 8:71. [PMID: 27338147 PMCID: PMC4919856 DOI: 10.1186/s13073-016-0323-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Medicine and healthcare are undergoing profound changes. Whole-genome sequencing and high-resolution imaging technologies are key drivers of this rapid and crucial transformation. Technological innovation combined with automation and miniaturization has triggered an explosion in data production that will soon reach exabyte proportions. How are we going to deal with this exponential increase in data production? The potential of "big data" for improving health is enormous but, at the same time, we face a wide range of challenges to overcome urgently. Europe is very proud of its cultural diversity; however, exploitation of the data made available through advances in genomic medicine, imaging, and a wide range of mobile health applications or connected devices is hampered by numerous historical, technical, legal, and political barriers. European health systems and databases are diverse and fragmented. There is a lack of harmonization of data formats, processing, analysis, and data transfer, which leads to incompatibilities and lost opportunities. Legal frameworks for data sharing are evolving. Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively. Addressing these barriers will contribute to creating the European Single Market for health, which will improve health and healthcare for all Europeans.
Collapse
Affiliation(s)
- Charles Auffray
- European Institute for Systems Biology and Medicine, 1 avenue Claude Vellefaux, 75010, Paris, France.
- CIRI-UMR5308, CNRS-ENS-INSERM-UCBL, Université de Lyon, 50 avenue Tony Garnier, 69007, Lyon, France.
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, 4362, Esch-sur-Alzette, Luxembourg.
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - László Bencze
- Health Services Management Training Centre, Faculty of Health and Public Services, Semmelweis University, Kútvölgyi út 2, 1125, Budapest, Hungary
| | - Mikael Benson
- Centre for Personalised Medicine, Linköping University, 581 85, Linköping, Sweden
| | - Jay Bergeron
- Translational & Bioinformatics, Pfizer Inc., 300 Technology Square, Cambridge, MA, 02139, USA
| | - Enrique Bernal-Delgado
- Institute for Health Sciences, IACS - IIS Aragon, San Juan Bosco 13, 50009, Zaragoza, Spain
| | - Niklas Blomberg
- ELIXIR, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.2, 1090, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT25.2, 1090, Vienna, Austria
- Max Planck Institute for Informatics, Campus E1 4, 66123, Saarbrücken, Germany
| | - Ana Conesa
- Príncipe Felipe Research Center, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
- University of Florida, Institute of Food and Agricultural Sciences (IFAS), 2033 Mowry Road, Gainesville, FL, 32610, USA
| | | | - Christophe Delogne
- Technology, Data & Analytics, KPMG Luxembourg, Société Coopérative, 39 Avenue John F. Kennedy, 1855, Luxembourg, Luxembourg
| | - Peter Devilee
- Department of Human Genetics, Department of Pathology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Alberto Di Meglio
- Information Technology Department, European Organization for Nuclear Research (CERN), 385 Route de Meyrin, 1211, Geneva 23, Switzerland
| | - Marinus Eijkemans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Norbert Graf
- Department of Pediatric Oncology/Hematology, Saarland University, Campus Homburg, Building 9, 66421, Homburg, Germany
| | - Vera Grimm
- Project Management Jülich, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Yi-Ke Guo
- Data Science Institute, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Ivo Glynne Gut
- CNAG-CRG, Center for Genomic Regulation, Barcelona Institute for Science and Technology (BIST), C/Baldiri Reixac 4, 08029, Barcelona, Spain
| | - Allan Hanbury
- Institute of Software Technology and Interactive Systems, TU Wien, Favoritenstrasse 9-11/188, 1040, Vienna, Austria
| | - Shahid Hanif
- The Association of the British Pharmaceutical Industry, 7th Floor, Southside, 105 Victoria Street, London, SW1E 6QT, UK
| | - Ralf-Dieter Hilgers
- Department of Medical Statistics, RWTH-Aachen University, Universitätsklinikum Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ángel Honrado
- SYNAPSE Research Management Partners, Diputació 237, Àtic 3ª, 08007, Barcelona, Spain
| | - D Rod Hose
- Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute for In-Silico Medicine, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | | | - Tim Hubbard
- Department of Medical & Molecular Genetics, King's College London, London, SE1 9RT, UK
- Genomics England, London, EC1M 6BQ, UK
| | - Sophie Helen Janacek
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Haralampos Karanikas
- National and Kapodistrian University of Athens, Medical School, Xristou Lada 6, 10561, Athens, Greece
| | - Tim Kievits
- Vitromics Healthcare Holding B.V., Onderwijsboulevard 225, 5223 DE, 's-Hertogenbosch, The Netherlands
| | - Manfred Kohler
- Fraunhofer Institute for Molecular Biology and Applied Ecology ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Andreas Kremer
- ITTM S.A., 9 avenue des Hauts Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Jerry Lanfear
- Research Business Technology, Pfizer Ltd, GP4 Building, Granta Park, Cambridge, CB21 6GP, UK
| | - Thomas Lengauer
- Max Planck Institute for Informatics, Campus E1 4, 66123, Saarbrücken, Germany
| | - Edith Maes
- Health Economics & Outcomes Research, Deloitte Belgium, Berkenlaan 8A, 1831, Diegem, Belgium
| | - Theo Meert
- Janssen Pharmaceutica N.V., R&D G3O, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Dörthe Nickel
- UMR3664 IC/CNRS, Institut Curie, Section Recherche, Pavillon Pasteur, 26 rue d'Ulm, 75248, Paris cedex 05, France
| | - Peter Oledzki
- Linguamatics Ltd, 324 Cambridge Science Park Milton Rd, Cambridge, CB4 0WG, UK
| | - Bertrand Pedersen
- PwC Luxembourg, 2 rue Gerhard Mercator, 2182, Luxembourg, Luxembourg
| | - Milan Petkovic
- Philips, HighTechCampus 36, 5656AE, Eindhoven, The Netherlands
| | - Konstantinos Pliakos
- Department of Public Health and Primary Care, KU Leuven Kulak, Etienne Sabbelaan 53, 8500, Kortrijk, Belgium
| | - Magnus Rattray
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Josep Redón I Màs
- INCLIVA Health Research Institute, University of Valencia, CIBERobn ISCIII, Avenida Menéndez Pelayo 4 accesorio, 46010, Valencia, Spain
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Thierry Sengstag
- Swiss Institute of Bioinformatics (SIB) and University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Xavier Serra-Picamal
- Agency for Health Quality and Assessment of Catalonia (AQuAS), Carrer de Roc Boronat 81-95, 08005, Barcelona, Spain
| | - Wouter Spek
- EuroBioForum Foundation, Chrysantstraat 10, 3135 HG, Vlaardingen, The Netherlands
| | - Lea A I Vaas
- Fraunhofer Institute for Molecular Biology and Applied Ecology ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Okker van Batenburg
- EuroBioForum Foundation, Chrysantstraat 10, 3135 HG, Vlaardingen, The Netherlands
| | - Marc Vandelaer
- Integrated BioBank of Luxembourg, 6 rue Nicolas-Ernest Barblé, 1210, Luxembourg, Luxembourg
| | - Peter Varnai
- Technopolis Group, 3 Pavilion Buildings, Brighton, BN1 1EE, UK
| | - Pablo Villoslada
- Hospital Clinic of Barcelona, Institute d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Rosello 149, 08036, Barcelona, Spain
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - John Peter Mary Wubbe
- European Platform for Patients' Organisations, Science and Industry (Epposi), De Meeûs Square 38-40, 1000, Brussels, Belgium
| | - Gianluigi Zanetti
- CRS4, Ed.1 POLARIS, 09129, Pula, Italy
- BBMRI-ERIC, Neue Stiftingtalstrasse 2/B/6, 8010, Graz, Austria
| |
Collapse
|