1
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
2
|
Zhu X, Yuan Y, Wang K, Shen W, Zhu Q. Identification of Aberrant Expression of Gemcitabine-Targeting Proteins in Drug-Resistant Cells Using an Activity-Based Gemcitabine Probe. ACS Chem Biol 2024; 19:2336-2344. [PMID: 39465385 DOI: 10.1021/acschembio.4c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Gemcitabine-based monotherapy or combination therapy has become the standard treatment for locally advanced and metastatic pancreatic cancer. However, the emergence of resistance within weeks of treatment severely compromises therapeutic efficacy. The intricate biological process of gemcitabine resistance in pancreatic cancer presents a complex challenge, as the underlying mechanisms remain unclear. Identifying the target protein of gemcitabine is crucial for studying its drug-resistance mechanism. An activity-based probe is a powerful tool for studying drug target proteins, but the current lack of activity-based gemcitabine probes with robust biological activity hinders research on gemcitabine. In this study, we developed three active probes based on gemcitabine, among which Gem-3 demonstrated excellent stability and labeling efficacy. We utilized Gem-3 in conjunction with chemical proteomics to identify intracellular target proteins. We identified 79 proteins that interact with gemcitabine, most of which were previously unknown and represented various functional classes. Additionally, we validated the increased expression of IFIT3 and MARCKS in drug-resistant cells, along with the activation of the NF-κB signaling pathway. These findings substantially contribute to our comprehension of gemcitabine's target proteins and further our understanding of the mechanisms driving gemcitabine resistance in pancreatic cancer cells.
Collapse
Affiliation(s)
- Xiaomei Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - YuQing Yuan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kai Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Shen
- Department of Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Sen K, Kumar Das S, Ghosh N, Sinha K, Sil PC. Lupeol: A dietary and medicinal triterpene with therapeutic potential. Biochem Pharmacol 2024; 229:116545. [PMID: 39293501 DOI: 10.1016/j.bcp.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Lupeol, a triterpene derived from various plants, has emerged as a potent dietary supplement with extensive therapeutic potential. This review offers a comprehensive examination of lupeol's applications across diverse health conditions. By meticulously analyzing current scientific literature, we have synthesized findings that underscore lupeol's impact on cancer, diabetes, gastrointestinal disorders, neurological diseases, dermatological conditions, nephrological issues, and cardiovascular health. The review delves into molecular studies that reveal lupeol's ability to modulate disease pathways and alleviate symptoms, positioning it as a promising therapeutic agent. Moreover, we discuss the potential role of lupeol in clinical practice and public health strategies, emphasizing its substantial benefits as a natural compound. This thorough analysis serves as a critical resource for researchers, providing insights into the multifaceted therapeutic properties of lupeol and its potential to significantly enhance health outcomes.
Collapse
Affiliation(s)
- Koushik Sen
- Jhargram Raj College, Jhargram 721507, India
| | | | | | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India.
| |
Collapse
|
4
|
Simsone Z, Feivalds T, Harju L, Miķelsone I, Blāķe I, Bērziņš J, Buiķis I. Morphological and Immunocytochemical Characterization of Paclitaxel-Induced Microcells in Sk-Mel-28 Melanoma Cells. Biomedicines 2024; 12:1576. [PMID: 39062149 PMCID: PMC11274385 DOI: 10.3390/biomedicines12071576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Biomarkers, including proteins, nucleic acids, antibodies, and peptides, are essential for identifying diseases such as cancer and differentiating between healthy and abnormal cells in patients. To date, studies have shown that cancer stem cells have DNA repair mechanisms that deter the effects of medicinal treatment. Experiments with cell cultures and chemotherapy treatments of these cultures have revealed the presence of small cells, with a small amount of cytoplasm that can be intensively stained with azure eosin, called microcells. Microcells develop during sporosis from a damaged tumor macrocell. After anticancer therapy in tumor cells, a defective macrocell may produce one or more microcells. This study aims to characterize microcell morphology in melanoma cell lines. In this investigation, we characterized the population of cancer cell microcells after applying paclitaxel treatment to a Sk-Mel-28 melanoma cell line using immunocytochemical cell marker detection and fluorescent microscopy. Paclitaxel-treated cancer cells show stronger expression of stem-associated ALDH2, SOX2, and Nanog markers than untreated cells. The proliferation of nuclear antigens in cells and the synthesis of RNA in microcells indicate cell self-defense, promoting resistance to applied therapy. These findings improve our understanding of microcell behavior in melanoma, potentially informing future strategies to counteract drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Zane Simsone
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Tālivaldis Feivalds
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Līga Harju
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Indra Miķelsone
- Department of Human Physiology and Biochemistry, Rīga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| | - Ilze Blāķe
- Faculty of Medicine and Life Science, The University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia;
| | - Juris Bērziņš
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| | - Indulis Buiķis
- Institute of Cardiology and Regenerative Medicine, The University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia; (T.F.); (J.B.); (I.B.)
| |
Collapse
|
5
|
Sethi Y, Vora V, Anyagwa OE, Turabi N, Abdelwahab M, Kaiwan O, Chopra H, Attia MS, Yahya G, Emran TB, Padda I. Streptomyces Paradigm in Anticancer Therapy: A State-of-the Art Review. CURRENT CANCER THERAPY REVIEWS 2024; 20:386-401. [DOI: 10.2174/0115733947254550230920170230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/09/2023] [Accepted: 08/16/2023] [Indexed: 01/12/2025]
Abstract
Abstract:
Cancer is one of the biggest threats to human health with a global incidence of 23.6 million,
mortality of 10 million, and an estimated 250 million lost in disability-adjusted life years
(DALYs) each year. Moreover, the incidence, mortality, and DALYs have increased over the past
decade by 26.3%, 20.9%, and 16.0%, respectively. Despite significant evolutions in medical therapy
and advances in the DNA microarray, proteomics technology, and targeted therapies, anticancer drug
resistance continues to be a growing concern and invites regular discovery of potent agents. One such
agent is the microbe-producing bioactive compounds like Streptomyces, which are proving increasingly
resourceful in anticancer therapy of the future. Streptomyces, especially the species living in
extreme conditions, produce bioactive compounds with cytolytic and anti-oxidative activity which
can be utilized for producing anticancer and chemo-preventive agents. The efficacy of the derived
compounds has been proven on cell lines and some of these have already established clinical results.
These compounds can potentially be utilized in the treatment of a variety of cancers including but not
limited to colon, lung, breast, GI tract, cervix, and skin cancer. The Streptomyces, thus possess the
armory to fuel the anticancer agents of the future and help address the problem of rising resistance to
currently available anti-cancer drugs. We conducted a state-of-art review using electronic databases
of PubMed, Scopus, and Google scholar with an objective to appraise the currently available literature
on Streptomyces as a source of anti-cancer agents and to compile the clinically significant literature
to update the clinicians.
Collapse
Affiliation(s)
- Yashendra Sethi
- PearResearch, Dehradun 248001, India
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand
Medical Education University, Dehradun, Uttarakhand, India
| | - Vidhi Vora
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand
Medical Education University, Dehradun, Uttarakhand, India
- Department of Medicine, Lokmanya Tilak Municipal
Medical College and Sion Hospital, Maharashtra University of Health Sciences, Mumbai, Maharashtra, India
| | | | | | | | - Oroshay Kaiwan
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand
Medical Education University, Dehradun, Uttarakhand, India
- Department of Medicine, Northeast Ohio Medical University, Ohio,
USA
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,
Chennai- 602105, Tamil Nadu, India
| | - Mohamed Shah Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University,
Zagazig 44519, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig
44519, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Inderbir Padda
- Department of Medicine, Richmond University Medical Centre, Staten Island, NY, USA
| |
Collapse
|
6
|
Chang P, Guo Y, Chen D, Li K, Wang W, Yang Z, Ma J, Zeng Y, Zhan W, Zhan Y. High-temperature PTT/CDT coordination nanoplatform realizing exacerbated hypoxia for enhancing hypoxia-activated chemotherapy to overcome tumor drug resistance. J Nanobiotechnology 2024; 22:374. [PMID: 38926723 PMCID: PMC11200845 DOI: 10.1186/s12951-024-02653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Hypoxia-activated prodrugs present new opportunities for safe and effective tumor drug resistance therapy due to their high selectivity for hypoxic cells. However, the uneven distribution of oxygen in solid tumor and insufficient hypoxia in the tumor microenvironment greatly limit its therapeutic efficacy. RESULTS In this paper, a novel AQ4N-Mn(II)@PDA coordination nanoplatform was designed and functionalized with GMBP1 to target drug-resistant tumor cells. Its excellent photothermal conversion efficiency could achieve local high-temperature photothermal therapy in tumors, which could not only effectively exacerbate tumor hypoxia and thus improve the efficacy of hypoxia-activated chemotherapy of AQ4N but also significantly accelerate Mn2+-mediated Fenton-like activity to enhance chemodynamic therapy. Moreover, real-time monitoring of blood oxygen saturation through photoacoustic imaging could reflect the hypoxic status of tumors during treatment. Furthermore, synergistic treatment effectively inhibited tumor growth and improved the survival rate of mice bearing orthotopic drug-resistant tumors. CONCLUSIONS This study not only provided a new idea for PTT combined with hypoxia-activated chemotherapy and CDT for drug-resistant tumors but also explored a vital theory for real-time monitoring of hypoxia during treatment.
Collapse
Affiliation(s)
- Peng Chang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, PR China
| | - Yingying Guo
- Institute of Analytical Chemistry and Instrument for Life Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Dan Chen
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, PR China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, PR China
| | - Wei Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, PR China
| | - Zhihua Yang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, PR China
| | - Jingwen Ma
- Radiology Department, CT and MRI Room, Ninth Hospital of Xi'an, Xi'an, 710054, PR China.
| | - Yun Zeng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, PR China.
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, PR China.
| | - Yonghua Zhan
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, PR China.
| |
Collapse
|
7
|
Li L, Xie W, Zhan L, Wen S, Luo X, Xu S, Cai Y, Tang W, Wang Q, Li M, Xie Z, Deng L, Zhu H, Yu G. Resolving tumor evolution: a phylogenetic approach. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:97-106. [PMID: 39282584 PMCID: PMC11390690 DOI: 10.1016/j.jncc.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 09/19/2024] Open
Abstract
The evolutionary dynamics of cancer, characterized by its profound heterogeneity, demand sophisticated tools for a holistic understanding. This review delves into tumor phylogenetics, an essential approach bridging evolutionary biology with oncology, offering unparalleled insights into cancer's evolutionary trajectory. We provide an overview of the workflow, encompassing study design, data acquisition, and phylogeny reconstruction. Notably, the integration of diverse data sets emerges as a transformative step, enhancing the depth and breadth of evolutionary insights. With this integrated perspective, tumor phylogenetics stands poised to redefine our understanding of cancer evolution and influence therapeutic strategies.
Collapse
Affiliation(s)
- Lin Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenqin Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaodi Wen
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital, Nanjing, China
| | - Xiao Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Division of Laboratory Medicine, Microbiome Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yantong Cai
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wenli Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zijing Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Deng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongyuan Zhu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Zhang X, Sun K, Gan R, Yan Y, Zhang C, Zheng D, Lu Y. WNT3 promotes chemoresistance to 5-Fluorouracil in oral squamous cell carcinoma via activating the canonical β-catenin pathway. BMC Cancer 2024; 24:564. [PMID: 38711026 PMCID: PMC11071218 DOI: 10.1186/s12885-024-12318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND 5-Fluorouracil (5FU) is a primary chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC). However, the development of drug resistance has significantly limited its clinical application. Therefore, there is an urgent need to determine the mechanisms underlying drug resistance and identify effective targets. In recent years, the Wingless and Int-1 (WNT) signaling pathway has been increasingly studied in cancer drug resistance; however, the role of WNT3, a ligand of the canonical WNT signaling pathway, in OSCC 5FU-resistance is not clear. This study delved into this potential connection. METHODS 5FU-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells underwent RNA sequencing analysis, which was then substantiated via Real-time quantitative PCR (RT-qPCR) and western blot tests. The influence of the WNT signaling on OSCC chemoresistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor methyl 3-benzoate (MSAB) was probed for its capacity to boost 5FU efficacy. RESULTS In this study, the WNT/β-catenin signaling pathway was notably activated in 5FU-resistant OSCC cell lines, which was confirmed through transcriptome sequencing analysis, RT-qPCR, and western blot verification. Additionally, the key ligand responsible for pathway activation, WNT3, was identified. By knocking down WNT3 in resistant cells or overexpressing WNT3 in parental cells, we found that WNT3 promoted 5FU-resistance in OSCC. In addition, the WNT inhibitor MSAB reversed 5FU-resistance in OSCC cells. CONCLUSIONS These data underscored the activation of the WNT/β-catenin signaling pathway in resistant cells and identified the promoting effect of WNT3 upregulation on 5FU-resistance in oral squamous carcinoma. This may provide a new therapeutic strategy for reversing 5FU-resistance in OSCC cells.
Collapse
Affiliation(s)
- Xuyang Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China
| | - Kairui Sun
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China
| | - Ruihuan Gan
- Department of Preventive Dentistry, Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yuxiang Yan
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China
| | - Chaochao Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China
| | - Dali Zheng
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China.
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China.
| | - Youguang Lu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
- Fujian Key Laboratory of Oral Diseases, Fuzhou, 350004, China.
- Fujian Provincial Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, 350004, China.
- Department of Preventive Dentistry, Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Zhu T, Zhou P, Yang L, Fang X, Zhi X. Troponin T1 silencing inhibits paclitaxel resistance and the development of breast cancer via suppressing rat sarcoma virus/rapidly accelerated fibrosarcoma 1 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2064-2076. [PMID: 38095131 DOI: 10.1002/tox.24084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 03/09/2024]
Abstract
OBJECTIVE We aimed to determine the role of Troponin T1 (TNNT1) in paclitaxel (PTX) resistance and tumor progression in breast cancer (BC). METHODS Differentially expressed genes were obtained from the GSE4298 and GSE90564 datasets. Hub genes were isolated from protein-protein interaction networks and further validated by real-time quantitative polymerase chain reaction. The effect of TNNT1 on PTX resistance was determined using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, transwell, flow cytometry assays, and subcutaneous xenografted tumor model. Western blotting was used to detect proteins associated with PTX resistance, apoptosis, migration, invasion, and other key pathways. Hematoxylin-eosin and immunohistochemical staining were used to evaluate the role of TNNT1 in tumors. RESULTS After comprehensive bioinformatic analysis, we identified CCND1, IGF1, SFN, INHBA, TNNT1, and TNFSF11 as hub genes for PTX resistance in BC. TNNT1 plays a key role in BC and is upregulated in PTX-resistant BC cells. TNNT1 silencing inhibited PTX resistance, proliferation, migration, and invasion while promoting apoptosis of PTX-resistant BC cells. Tumor xenograft experiments revealed that TNNT1 silencing suppresses PTX resistance and tumor development in vivo. In addition, TNNT1 silencing inhibited the expression of proteins in the rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma1 (RAF1) pathway in vivo. Treatment with a RAS/RAF1 pathway activator reversed the inhibitory effect of TNNT1 silencing on proliferation, migration, and invasion while promoting apoptosis of PTX resistance BC cells. CONCLUSION Silencing of TNNT1 suppresses PTX resistance and BC progression by inhibiting the RAS/RAF1 pathway, which is a promising biomarker and therapeutic target for drug resistance in BC.
Collapse
Affiliation(s)
- Tong Zhu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Peng Zhou
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Lu Yang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xuan Fang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xiangcheng Zhi
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| |
Collapse
|
10
|
Fan W, Shao K, Luo M. Structural View of Cryo-Electron Microscopy-Determined ATP-Binding Cassette Transporters in Human Multidrug Resistance. Biomolecules 2024; 14:231. [PMID: 38397468 PMCID: PMC10886794 DOI: 10.3390/biom14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
ATP-binding cassette (ABC) transporters, acting as cellular "pumps," facilitate solute translocation through membranes via ATP hydrolysis. Their overexpression is closely tied to multidrug resistance (MDR), a major obstacle in chemotherapy and neurological disorder treatment, hampering drug accumulation and delivery. Extensive research has delved into the intricate interplay between ABC transporter structure, function, and potential inhibition for MDR reversal. Cryo-electron microscopy has been instrumental in unveiling structural details of various MDR-causing ABC transporters, encompassing ABCB1, ABCC1, and ABCG2, as well as the recently revealed ABCC3 and ABCC4 structures. The newly obtained structural insight has deepened our understanding of substrate and drug binding, translocation mechanisms, and inhibitor interactions. Given the growing body of structural information available for human MDR transporters and their associated mechanisms, we believe it is timely to compile a comprehensive review of these transporters and compare their functional mechanisms in the context of multidrug resistance. Therefore, this review primarily focuses on the structural aspects of clinically significant human ABC transporters linked to MDR, with the aim of providing valuable insights to enhance the effectiveness of MDR reversal strategies in clinical therapies.
Collapse
Affiliation(s)
| | | | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (W.F.); (K.S.)
| |
Collapse
|
11
|
Mendes I, Vale N. Overcoming Microbiome-Acquired Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Biomedicines 2024; 12:227. [PMID: 38275398 PMCID: PMC10813061 DOI: 10.3390/biomedicines12010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Gastrointestinal cancers (GICs) are one of the most recurrent diseases in the world. Among all GICs, pancreatic cancer (PC) is one of the deadliest and continues to disrupt people's lives worldwide. The most frequent pancreatic cancer type is pancreatic ductal adenocarcinoma (PDAC), representing 90 to 95% of all pancreatic malignancies. PC is one of the cancers with the worst prognoses due to its non-specific symptoms that lead to a late diagnosis, but also due to the high resistance it develops to anticancer drugs. Gemcitabine is a standard treatment option for PDAC, however, resistance to this anticancer drug develops very fast. The microbiome was recently classified as a cancer hallmark and has emerged in several studies detailing how it promotes drug resistance. However, this area of study still has seen very little development, and more answers will help in developing personalized medicine. PC is one of the cancers with the highest mortality rates; therefore, it is crucial to explore how the microbiome may mold the response to reference drugs used in PDAC, such as gemcitabine. In this article, we provide a review of what has already been investigated regarding the impact that the microbiome has on the development of PDAC in terms of its effect on the gemcitabine pathway, which may influence the response to gemcitabine. Therapeutic advances in this type of GIC could bring innovative solutions and more effective therapeutic strategies for other types of GIC, such as colorectal cancer (CRC), due to its close relation with the microbiome.
Collapse
Affiliation(s)
- Inês Mendes
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
12
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
13
|
Wang X, Yang L, Yu C, Ling X, Guo C, Chen R, Li D, Liu Z. An integrated computational strategy to predict personalized cancer drug combinations by reversing drug resistance signatures. Comput Biol Med 2023; 163:107230. [PMID: 37418899 DOI: 10.1016/j.compbiomed.2023.107230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Drug resistance currently poses the greatest barrier to cancer treatments. To overcome drug resistance, drug combination therapy has been proposed as a promising treatment strategy. Herein, we present Re-Sensitizing Drug Prediction (RSDP), a novel computational strategy, for predicting the personalized cancer drug combination A + B by reversing the resistance signature of drug A. The process integrates multiple biological features using a robust rank aggregation algorithm, including Connectivity Map, synthetic lethality, synthetic rescue, pathway, and drug target. Bioinformatics assessments revealed that RSDP achieved a relatively accurate prediction performance for identifying personalized combinational re-sensitizing drug B against cell line-specific intrinsic resistance, cell line-specific acquired resistance, and patient-specific intrinsic resistance to drug A. In addition, we developed the largest resource of cell line-specific cancer drug resistance signatures, including intrinsic and acquired resistance, as a byproduct of the proposed strategy. The findings indicate that personalized drug resistance signature reversal is a promising strategy for identifying personalized drug combinations, which may guide future clinical decisions regarding personalized medicine.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lele Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Chuang Yu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinping Ling
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Congcong Guo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ruzhen Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Zhongyang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
14
|
Flanary VL, Fisher JL, Wilk EJ, Howton TC, Lasseigne BN. Computational Advancements in Cancer Combination Therapy Prediction. JCO Precis Oncol 2023; 7:e2300261. [PMID: 37824797 DOI: 10.1200/po.23.00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 10/14/2023] Open
Abstract
Given the high attrition rate of de novo drug discovery and limited efficacy of single-agent therapies in cancer treatment, combination therapy prediction through in silico drug repurposing has risen as a time- and cost-effective alternative for identifying novel and potentially efficacious therapies for cancer. The purpose of this review is to provide an introduction to computational methods for cancer combination therapy prediction and to summarize recent studies that implement each of these methods. A systematic search of the PubMed database was performed, focusing on studies published within the past 10 years. Our search included reviews and articles of ongoing and retrospective studies. We prioritized articles with findings that suggest considerations for improving combination therapy prediction methods over providing a meta-analysis of all currently available cancer combination therapy prediction methods. Computational methods used for drug combination therapy prediction in cancer research include networks, regression-based machine learning, classifier machine learning models, and deep learning approaches. Each method class has its own advantages and disadvantages, so careful consideration is needed to determine the most suitable class when designing a combination therapy prediction method. Future directions to improve current combination therapy prediction technology include incorporation of disease pathobiology, drug characteristics, patient multiomics data, and drug-drug interactions to determine maximally efficacious and tolerable drug regimens for cancer. As computational methods improve in their capability to integrate patient, drug, and disease data, more comprehensive models can be developed to more accurately predict safe and efficacious combination drug therapies for cancer and other complex diseases.
Collapse
Affiliation(s)
- Victoria L Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer L Fisher
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Elizabeth J Wilk
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Timothy C Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Brittany N Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
15
|
Stukas D, Jasukaitiene A, Bartkeviciene A, Matthews J, Maimets T, Teino I, Jaudzems K, Gulbinas A, Dambrauskas Z. Targeting AHR Increases Pancreatic Cancer Cell Sensitivity to Gemcitabine through the ELAVL1-DCK Pathway. Int J Mol Sci 2023; 24:13155. [PMID: 37685961 PMCID: PMC10487468 DOI: 10.3390/ijms241713155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor that is commonly upregulated in pancreatic ductal adenocarcinoma (PDAC). AHR hinders the shuttling of human antigen R (ELAVL1) from the nucleus to the cytoplasm, where it stabilises its target messenger RNAs (mRNAs) and enhances protein expression. Among these target mRNAs are those induced by gemcitabine. Increased AHR expression leads to the sequestration of ELAVL1 in the nucleus, resulting in chemoresistance. This study aimed to investigate the interaction between AHR and ELAVL1 in the pathogenesis of PDAC in vitro. AHR and ELAVL1 genes were silenced by siRNA transfection. The RNA and protein were extracted for quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Direct binding between the ELAVL1 protein and AHR mRNA was examined through immunoprecipitation (IP) assay. Cell viability, clonogenicity, and migration assays were performed. Our study revealed that both AHR and ELAVL1 inter-regulate each other, while also having a role in cell proliferation, migration, and chemoresistance in PDAC cell lines. Notably, both proteins function through distinct mechanisms. The silencing of ELAVL1 disrupts the stability of its target mRNAs, resulting in the decreased expression of numerous cytoprotective proteins. In contrast, the silencing of AHR diminishes cell migration and proliferation and enhances cell sensitivity to gemcitabine through the AHR-ELAVL1-deoxycytidine kinase (DCK) molecular pathway. In conclusion, AHR and ELAVL1 interaction can form a negative feedback loop. By inhibiting AHR expression, PDAC cells become more susceptible to gemcitabine through the ELAVL1-DCK pathway.
Collapse
Affiliation(s)
- Darius Stukas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Aldona Jasukaitiene
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Arenida Bartkeviciene
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.M.); (I.T.)
| | - Indrek Teino
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.M.); (I.T.)
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Antanas Gulbinas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| | - Zilvinas Dambrauskas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (A.B.); (A.G.); (Z.D.)
| |
Collapse
|
16
|
Chen H, Zhang M, Deng Y. Long Noncoding RNAs in Taxane Resistance of Breast Cancer. Int J Mol Sci 2023; 24:12253. [PMID: 37569629 PMCID: PMC10418730 DOI: 10.3390/ijms241512253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer is a common cancer in women and a leading cause of mortality. With the early diagnosis and development of therapeutic drugs, the prognosis of breast cancer has markedly improved. Chemotherapy is one of the predominant strategies for the treatment of breast cancer. Taxanes, including paclitaxel and docetaxel, are widely used in the treatment of breast cancer and remarkably decrease the risk of death and recurrence. However, taxane resistance caused by multiple factors significantly impacts the effect of the drug and leads to poor prognosis. Long noncoding RNAs (lncRNAs) have been shown to play a significant role in critical cellular processes, and a number of studies have illustrated that lncRNAs play vital roles in taxane resistance. In this review, we systematically summarize the mechanisms of taxane resistance in breast cancer and the functions of lncRNAs in taxane resistance in breast cancer. The findings provide insight into the role of lncRNAs in taxane resistance and suggest that lncRNAs may be used to develop therapeutic targets to prevent or reverse taxane resistance in patients with breast cancer.
Collapse
Affiliation(s)
- Hailong Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Yongchuan Deng
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| |
Collapse
|
17
|
Farhan M. Insights on the Role of Polyphenols in Combating Cancer Drug Resistance. Biomedicines 2023; 11:1709. [PMID: 37371804 PMCID: PMC10296548 DOI: 10.3390/biomedicines11061709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chemotherapy resistance is still a serious problem in the treatment of most cancers. Many cellular and molecular mechanisms contribute to both inherent and acquired drug resistance. They include the use of unaffected growth-signaling pathways, changes in the tumor microenvironment, and the active transport of medicines out of the cell. The antioxidant capacity of polyphenols and their potential to inhibit the activation of procarcinogens, cancer cell proliferation, metastasis, and angiogenesis, as well as to promote the inhibition or downregulation of active drug efflux transporters, have been linked to a reduced risk of cancer in epidemiological studies. Polyphenols also have the ability to alter immunological responses and inflammatory cascades, as well as trigger apoptosis in cancer cells. The discovery of the relationship between abnormal growth signaling and metabolic dysfunction in cancer cells highlights the importance of further investigating the effects of dietary polyphenols, including their ability to boost the efficacy of chemotherapy and avoid multidrug resistance (MDR). Here, it is summarized what is known regarding the effectiveness of natural polyphenolic compounds in counteracting the resistance that might develop to cancer drugs as a result of a variety of different mechanisms.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
18
|
Xu H, Luo W, Zhao Z, Miao X, Chai C, Hu J, Tang H, Zhang H, Zhou W. Establishment and characterization of a new intrahepatic cholangiocarcinoma cell line, ICC-X3. Hum Cell 2023; 36:854-865. [PMID: 36662372 DOI: 10.1007/s13577-023-00858-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer of the biliary tract that is prone to recurrence and metastasis and is characterized by poor sensitivity to chemotherapy and overall prognosis. To address this challenge, the establishment of suitable preclinical models is critical. In this study, we successfully established a new ICC cell line, named ICC-X3, from the satellite lesions of one ICC patient. The cell line was characterized with respect to phenotypic, molecular, biomarker, functional and histological properties. STR confirmed that ICC-X3 was highly consistent with primary tumor tissue. ICC-X3 cells positively expressed CK7, CK19, E-cadherin, vimentin, and Ki67. ICC-X3 was all resistant to gemcitabine, paclitaxel, 5-FU, and oxaliplatin. The cell line was able to rapidly form xenograft tumors which were highly similar to the primary tumor. The missense mutation of TP53 exon was detected in ICC-X3 cells. ICC-X3 can be used as a good experimental model to study the progression, metastasis, and drug resistance of ICC.
Collapse
Affiliation(s)
- Hao Xu
- The Forth Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, LanZhou, 730000, Gansu, China.
| | - Wei Luo
- The Forth Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, LanZhou, 730000, Gansu, China
| | - Zhenjie Zhao
- The Forth Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, LanZhou, 730000, Gansu, China
| | - Xin Miao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, LanZhou, 730000, China
| | - Changpeng Chai
- The Forth Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, LanZhou, 730000, Gansu, China
| | - Jinjing Hu
- The Forth Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, LanZhou, 730000, Gansu, China
| | - Huan Tang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Hui Zhang
- Department of General Surgery, the Second Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, the Second Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
19
|
Zhou Y, Russo J, Rueff J, Pires MAM, de Castro GB. Genetic determinants and absence of breast cancer in Xavante Indians in Sangradouro Reserve, Brazil. Sci Rep 2023; 13:1452. [PMID: 36702877 PMCID: PMC9879933 DOI: 10.1038/s41598-023-28461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Genetic compositions of distinct human populations are different. How genomic variants influence many common and rare genetic diseases is always of great medical and anthropological interest, and understanding of genetic architectures of population groups in relation to diseases can advance our knowledge of medicine. Here, we have studied the genomic architecture of a group of Xavante Indians, an indigenous population in Brazil, and compared them with normal populations from the 1000 Genomes Projects. Principal component analysis (PCA) indicates that the Xavante Indians are genetically distinctive when compared to other ethnic groups. No incidence of breast cancer cases has ever been reported in the population, and polygenic risk analysis indicates extremely low breast cancer risk in this population when compared with germline TCGA (The Cancer Genome Atlas) breast cancer normal control samples. Low germinal mutation burden among this population is also observed. Our findings will help to deepen the understanding of breast cancer and might also provide new approaches to study the disease.
Collapse
Affiliation(s)
- Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jose Russo
- The Irma H Russo, MD-Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - José Rueff
- Center for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Guilherme Bezerra de Castro
- Molecular Cancer Research Center, Cuiabá, Mato Grosso, Brazil.
- Molecular Cancer Research Center, P.O.Box 1559, Woking, GU22 2WN, UK.
| |
Collapse
|
20
|
Dacrema M, Ali A, Ullah H, Khan A, Di Minno A, Xiao J, Martins AMC, Daglia M. Spice-Derived Bioactive Compounds Confer Colorectal Cancer Prevention via Modulation of Gut Microbiota. Cancers (Basel) 2022; 14:cancers14225682. [PMID: 36428774 PMCID: PMC9688386 DOI: 10.3390/cancers14225682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is the second most frequent cause of cancer-related mortality among all types of malignancies. Sedentary lifestyles, obesity, smoking, red and processed meat, low-fiber diets, inflammatory bowel disease, and gut dysbiosis are the most important risk factors associated with CRC pathogenesis. Alterations in gut microbiota are positively correlated with colorectal carcinogenesis, as these can dysregulate the immune response, alter the gut's metabolic profile, modify the molecular processes in colonocytes, and initiate mutagenesis. Changes in the daily diet, and the addition of plant-based nutraceuticals, have the ability to modulate the composition and functionality of the gut microbiota, maintaining gut homeostasis and regulating host immune and inflammatory responses. Spices are one of the fundamental components of the human diet that are used for their bioactive properties (i.e., antimicrobial, antioxidant, and anti-inflammatory effects) and these exert beneficial effects on health, improving digestion and showing anti-inflammatory, immunomodulatory, and glucose- and cholesterol-lowering activities, as well as possessing properties that affect cognition and mood. The anti-inflammatory and immunomodulatory properties of spices could be useful in the prevention of various types of cancers that affect the digestive system. This review is designed to summarize the reciprocal interactions between dietary spices and the gut microbiota, and highlight the impact of dietary spices and their bioactive compounds on colorectal carcinogenesis by targeting the gut microbiota.
Collapse
Affiliation(s)
- Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Arif Ali
- Postgraduate Program in Pharmacology, Federal University of Ceará, Fortaleza 60430372, Brazil
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ayesha Khan
- Department of Medicine, Combined Military Hospital Nowshera, Nowshera 24110, Pakistan
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza 60430372, Brazil
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence:
| |
Collapse
|
21
|
Barata IS, Gomes BC, Rodrigues AS, Rueff J, Kranendonk M, Esteves F. The Complex Dynamic of Phase I Drug Metabolism in the Early Stages of Doxorubicin Resistance in Breast Cancer Cells. Genes (Basel) 2022; 13:1977. [PMID: 36360213 PMCID: PMC9689592 DOI: 10.3390/genes13111977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
The altered activity of drug metabolism enzymes (DMEs) is a hallmark of chemotherapy resistance. Cytochrome P450s (CYPs), mainly CYP3A4, and several oxidoreductases are responsible for Phase I metabolism of doxorubicin (DOX), an anthracycline widely used in breast cancer (BC) treatment. This study aimed to investigate the role of Phase I DMEs involved in the first stages of acquisition of DOX-resistance in BC cells. For this purpose, the expression of 92 DME genes and specific CYP-complex enzymes activities were assessed in either sensitive (MCF-7 parental cells; MCF-7/DOXS) or DOX-resistant (MCF-7/DOXR) cells. The DMEs genes detected to be significantly differentially expressed in MCF-7/DOXR cells (12 CYPs and eight oxidoreductases) were indicated previously to be involved in tumor progression and/or chemotherapy response. The analysis of CYP-mediated activities suggests a putative enhanced CYP3A4-dependent metabolism in MCF-7/DOXR cells. A discrepancy was observed between CYP-enzyme activities and their corresponding levels of mRNA transcripts. This is indicative that the phenotype of DMEs is not linearly correlated with transcription induction responses, confirming the multifactorial complexity of this mechanism. Our results pinpoint the potential role of specific CYPs and oxidoreductases involved in the metabolism of drugs, retinoic and arachidonic acids, in the mechanisms of chemo-resistance to DOX and carcinogenesis of BC.
Collapse
|
22
|
Chen J, Li S, Huang Z, Cao C, Wang A, He Q. METTL3 suppresses anlotinib sensitivity by regulating m 6A modification of FGFR3 in oral squamous cell carcinoma. Cancer Cell Int 2022; 22:295. [PMID: 36167542 PMCID: PMC9516809 DOI: 10.1186/s12935-022-02715-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/09/2022] [Indexed: 12/01/2022] Open
Abstract
Background N6-methyladenosine (m6A) is an abundant nucleotide modification in mRNA, but there were few studies on its role in cancer drug sensitivity and resistance. Anlotinib has been proved to have effective antitumor effects in oral squamous cell carcinoma (OSCC) in our previous study. Here, we sought to investigate the treatment target of anlotinib and the function and mechanisms of m6A modification in regulating anlotinib effect in OSCC. Methods Anlotinib treatment in a dose-dependent manner, western blotting, qRT-PCR and cell lost-of-function assays were used to study the treatment target of anlotinib in OSCC. RNA m6A dot blot assays, the m6A MeRIP-seq and MeRIP-qPCR, RNA and protein stability assays were used to explore the m6A modification of the treatment target of anlotinib. Cell lost-of-function assays after METTL3 depletion were conducted to investigate the effect of m6A modification level on the therapeutic effect of anlotinib in OSCC. Patient-derived tumor xenograft (PDX) models and immunohistochemistry staining were performed to study the relationship of METTL3 and antitumor sensitivity of anlotinib in vivo. Results Anlotinib targeted FGFR3 in the treatment of OSCC and inhibited tumor cell proliferation and promoted apoptosis by inactivating the FGFR3/AKT/mTOR signaling pathway. METTL3 was identified to target and modify FGFR3 m6A methylation and then decrease the stability of mRNA. METTL3 expression level was related to the anlotinib sensitivity in OSCC cells in vitro and METTL3 knockdown promoted anlotinib sensitivity of OSCC cells by inhibiting the FGFR3 expression. PDX models samples furthermore showed that METTL3 and FGFR3 levels were tightly correlated with the anlotinib efficacy in OSCC. Conclusions In summary, our work revealed that FGFR3 was served as the treatment target of anlotinib and METTL3-mediated FGFR3 m6A modification played a critical function in the anlotinib sensitivity in OSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02715-7.
Collapse
Affiliation(s)
- Jie Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.,Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Shuai Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.,Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning, China
| | - Zhexun Huang
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Congyuan Cao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
23
|
Aria H, Rezaei M, Nazem S, Daraei A, Nikfar G, Mansoori B, Bahmanyar M, Tavassoli A, Vakil MK, Mansoori Y. Purinergic receptors are a key bottleneck in tumor metabolic reprogramming: The prime suspect in cancer therapeutic resistance. Front Immunol 2022; 13:947885. [PMID: 36072596 PMCID: PMC9444135 DOI: 10.3389/fimmu.2022.947885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
ATP and other nucleoside phosphates have specific receptors named purinergic receptors. Purinergic receptors and ectonucleotidases regulate various signaling pathways that play a role in physiological and pathological processes. Extracellular ATP in the tumor microenvironment (TME) has a higher level than in normal tissues and plays a role in cancer cell growth, survival, angiogenesis, metastasis, and drug resistance. In this review, we investigated the role of purinergic receptors in the development of resistance to therapy through changes in tumor cell metabolism. When a cell transforms to neoplasia, its metabolic processes change. The metabolic reprogramming modified metabolic feature of the TME, that can cause impeding immune surveillance and promote cancer growth. The purinergic receptors contribute to therapy resistance by modifying cancer cells' glucose, lipid, and amino acid metabolism. Limiting the energy supply of cancer cells is one approach to overcoming resistance. Glycolysis inhibitors which reduce intracellular ATP levels may make cancer cells more susceptible to anti-cancer therapies. The loss of the P2X7R through glucose intolerance and decreased fatty acid metabolism reduces therapeutic resistance. Potential metabolic blockers that can be employed in combination with other therapies will aid in the discovery of new anti-cancer immunotherapy to overcome therapy resistance. Therefore, therapeutic interventions that are considered to inhibit cancer cell metabolism and purinergic receptors simultaneously can potentially reduce resistance to treatment.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ghasem Nikfar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnam Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Bahmanyar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Tavassoli
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
24
|
Liew HS, Mai CW, Zulkefeli M, Madheswaran T, Kiew LV, Pua LJW, Hii LW, Lim WM, Low ML. Novel Gemcitabine-Re(I) Bisquinolinyl Complex Combinations and Formulations With Liquid Crystalline Nanoparticles for Pancreatic Cancer Photodynamic Therapy. Front Pharmacol 2022; 13:903210. [PMID: 35873548 PMCID: PMC9299370 DOI: 10.3389/fphar.2022.903210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
With less than 10% of 5-year survival rate, pancreatic ductal adenocarcinoma (PDAC) is known to be one of the most lethal types of cancer. Current literature supports that gemcitabine is the first-line treatment of PDAC. However, poor cellular penetration of gemcitabine along with the acquired and intrinsic chemoresistance of tumor against it often reduced its efficacy and hence necessitates the administration of high gemcitabine dose during chemotherapy. Photodynamic therapy (PDT), a more selective and minimally invasive treatment, may be used synergistically with gemcitabine to reduce the doses utilized and dose-related side effects. This study reports the synergistic use of Re(I) bisquinolinyl complex, a transition metal complex photosensitizer with gemcitabine against PDAC. Re(I) bisquinolinyl complex was found to act synergistically with gemcitabine against PDAC in vitro at various ratios. With the aim to enhance cellular uptake and therapeutic efficiency, the Re(I) bisquinolinyl complex and gemcitabine were encapsulated into liquid crystalline nanoparticles (LCNPs) system. The formulations were found to produce homogeneous drug-loaded LCNPs (average size: 159-173 nm, zeta potential +1.06 to -10 mV). Around 70% of gemcitabine and 90% of the Re(I) bisquinolinyl complex were found to be entrapped efficiently in the formulated LCNPs. The release rate of gemcitabine or/and the Re(I) bisquinolinyl complex loaded into LCNPs was evaluated in vitro, and the hydrophilic gemcitabine was released at a faster rate than the lipophilic Re(I) complex. LCNPs loaded with gemcitabine and Re(I) bisquinolinyl complex in a 1:1 ratio illustrated the best anti-cancer activity among the LCNP formulations (IC50 of BxPC3: 0.15 μM; IC50 of SW 1990: 0.76 μM) through apoptosis. The current findings suggest the potential use of transition metal-based photosensitizer as an adjunctive agent for gemcitabine-based chemotherapy against PDAC and the importance of nano-formulation in such application.
Collapse
Affiliation(s)
- Hui Shan Liew
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia.,School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Mohd Zulkefeli
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | | | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lesley Jia Wei Pua
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ling Wei Hii
- Centre for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia.,School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Wei Meng Lim
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - May Lee Low
- Centre for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia.,School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Naghsh-Nilchi A, Ebrahimi Ghahnavieh L, Dehghanian F. Construction of miRNA-lncRNA-mRNA co-expression network affecting EMT-mediated cisplatin resistance in ovarian cancer. J Cell Mol Med 2022; 26:4530-4547. [PMID: 35810383 PMCID: PMC9357632 DOI: 10.1111/jcmm.17477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial-mesenchymal transition (EMT) in this resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial-like and mesenchymal-like cells, the module identification analysis was performed using weighted gene co-expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein-protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co-expression of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non-preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co-expression pattern of the brown module's hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.
Collapse
Affiliation(s)
- Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
26
|
Rampado R, Biccari A, D'Angelo E, Collino F, Cricrì G, Caliceti P, Giordano F, Taraballi F, Pucciarelli S, Agostini M. Optimization of Biomimetic, Leukocyte-Mimicking Nanovesicles for Drug Delivery Against Colorectal Cancer Using a Design of Experiment Approach. Front Bioeng Biotechnol 2022; 10:883034. [PMID: 35757799 PMCID: PMC9214241 DOI: 10.3389/fbioe.2022.883034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
The development of biomimetic nanoparticles (NPs) has revolutionized the concept of nanomedicine by offering a completely new set of biocompatible materials to formulate innovative drug delivery systems capable of imitating the behavior of cells. Specifically, the use of leukocyte-derived membrane proteins to functionalize nanovesicles (leukosomes) can enable their long circulation and target the inflamed endothelium present in many inflammatory pathologies and tumors, making them a promising and versatile drug delivery system. However, these studies did not elucidate the critical experimental parameters involved in leukosomes formulation. In the present study, we approached the preparation of leukosomes using a design of experiment (DoE) method to better understand the influence of experimental parameters on leukosomes features such as size, size distribution, and protein loading. We also validated this formulation technologically and tested its behavior in in vitro colorectal cancer (CRC) models, including CRC patient-derived tumor organoids (PDOs). We demonstrated leukosomes biocompatibility, endothelium adhesion capability, and tumor target in three-dimensional (3D) settings using CRC cell lines. Overall, our study offers a novel conceptual framework for biomimetic NPs using a DoE strategy and consolidates the high therapeutic potential of leukosomes as a viable drug delivery system for anti-inflammatory and antineoplastic applications.
Collapse
Affiliation(s)
- Riccardo Rampado
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy.,Nano-Inspired Biomedicine Lab, Institute of Pediatric Research- Città della Speranza, Padua, Italy
| | - Andrea Biccari
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy.,Nano-Inspired Biomedicine Lab, Institute of Pediatric Research- Città della Speranza, Padua, Italy
| | - Edoardo D'Angelo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy.,Nano-Inspired Biomedicine Lab, Institute of Pediatric Research- Città della Speranza, Padua, Italy
| | - Federica Collino
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy.,Laboratory of Translational Research in Pediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Cricrì
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy.,Laboratory of Translational Research in Pediatric Nephro-Urology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Federica Giordano
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, United States.,Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, United States.,Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Salvatore Pucciarelli
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy.,Nano-Inspired Biomedicine Lab, Institute of Pediatric Research- Città della Speranza, Padua, Italy
| |
Collapse
|
27
|
Enhancer RNAs (eRNAs) in Cancer: The Jacks of All Trades. Cancers (Basel) 2022; 14:cancers14081978. [PMID: 35454885 PMCID: PMC9030334 DOI: 10.3390/cancers14081978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review focuses on eRNAs and the several mechanisms by which they can regulate gene expression. In particular we describe here the most recent examples of eRNAs dysregulated in cancer or involved in the immune escape of tumor cells. Abstract Enhancer RNAs (eRNAs) are non-coding RNAs (ncRNAs) transcribed in enhancer regions. They play an important role in transcriptional regulation, mainly during cellular differentiation. eRNAs are tightly tissue- and cell-type specific and are induced by specific stimuli, activating promoters of target genes in turn. eRNAs usually have a very short half-life but in some cases, once activated, they can be stably expressed and acquire additional functions. Due to their critical role, eRNAs are often dysregulated in cancer and growing number of interactions with chromatin modifiers, transcription factors, and splicing machinery have been described. Enhancer activation and eRNA transcription have particular relevance also in inflammatory response, placing the eRNAs at the interplay between cancer and immune cells. Here, we summarize all the possible molecular mechanisms recently reported in association with eRNAs activity.
Collapse
|
28
|
Patel R, Lacerda Q, Oeffinger BE, Eisenbrey JR, Rochani AK, Kaushal G, Wessner CE, Wheatley MA. Development of a Dual Drug-Loaded, Surfactant-Stabilized Contrast Agent Containing Oxygen. Polymers (Basel) 2022; 14:polym14081568. [PMID: 35458319 PMCID: PMC9027498 DOI: 10.3390/polym14081568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023] Open
Abstract
Co-delivery of cancer therapeutics improves efficacy and encourages synergy, but delivery faces challenges, including multidrug resistance and spatiotemporal distribution of therapeutics. To address these, we added paclitaxel to previously developed acoustically labile, oxygen-core, surfactant-stabilized microbubbles encapsulating lonidamine, with the aim of developing an agent containing both a therapeutic gas and two drugs acting in combination. Upon comparison of unloaded, single-loaded, and dual-loaded microbubbles, size (~1.7 µm) and yield (~2 × 109 microbubbles/mL) (~1.7) were not statistically different, nor were acoustic properties (maximum in vitro enhancements roughly 18 dB, in vitro enhancements roughly 18 dB). Both drugs encapsulated above required doses calculated for head and neck squamous cell carcinoma, the cancer of choice. Interestingly, paclitaxel encapsulation efficiency increased from 1.66% to 3.48% when lonidamine was included. During preparation, the combination of single drug-loaded micelles gave higher encapsulation (µg drug/g microbubbles) than micelles loaded with either drug alone (lonidamine, 104.85 ± 22.87 vs. 87.54 ± 16.41), paclitaxel (187.35 ± 8.38 vs. 136.51 ± 30.66). In vivo intravenous microbubbles produced prompt ultrasound enhancement within tumors lasting 3–5 min, indicating penetration into tumor vasculature. The ability to locally destroy the microbubble within the tumor vasculature was confirmed using a series of higher intensity ultrasound pulses. This ability to locally destroy microbubbles shows therapeutic promise that warrants further investigation.
Collapse
Affiliation(s)
- Raj Patel
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (R.P.); (Q.L.); (B.E.O.)
| | - Quezia Lacerda
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (R.P.); (Q.L.); (B.E.O.)
| | - Brian E. Oeffinger
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (R.P.); (Q.L.); (B.E.O.)
| | - John R. Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.R.E.); (C.E.W.)
| | - Ankit K. Rochani
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.K.R.); (G.K.)
| | - Gagan Kaushal
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.K.R.); (G.K.)
| | - Corinne E. Wessner
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.R.E.); (C.E.W.)
| | - Margaret A. Wheatley
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (R.P.); (Q.L.); (B.E.O.)
- Correspondence:
| |
Collapse
|
29
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
30
|
Yee Kuen C, Masarudin MJ. Chitosan Nanoparticle-Based System: A New Insight into the Promising Controlled Release System for Lung Cancer Treatment. Molecules 2022; 27:473. [PMID: 35056788 PMCID: PMC8778092 DOI: 10.3390/molecules27020473] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has been recognized as one of the most often diagnosed and perhaps most lethal cancer diseases worldwide. Conventional chemotherapy for lung cancer-related diseases has bumped into various limitations and challenges, including non-targeted drug delivery, short drug retention period, low therapeutic efficacy, and multidrug resistance (MDR). Chitosan (CS), a natural polymer derived from deacetylation of chitin, and comprised of arbitrarily distributed β-(1-4)-linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit) that exhibits magnificent characteristics, including being mucoadhesive, biodegradable, and biocompatible, has emerged as an essential element for the development of a nano-particulate delivery vehicle. Additionally, the flexibility of CS structure due to the free protonable amino groups in the CS backbone has made it easy for the modification and functionalization of CS to be developed into a nanoparticle system with high adaptability in lung cancer treatment. In this review, the current state of chitosan nanoparticle (CNP) systems, including the advantages, challenges, and opportunities, will be discussed, followed by drug release mechanisms and mathematical kinetic models. Subsequently, various modification routes of CNP for improved and enhanced therapeutic efficacy, as well as other restrictions of conventional drug administration for lung cancer treatment, are covered.
Collapse
Affiliation(s)
- Cha Yee Kuen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
31
|
Network Biology and Artificial Intelligence Drive the Understanding of the Multidrug Resistance Phenotype in Cancer. Drug Resist Updat 2022; 60:100811. [DOI: 10.1016/j.drup.2022.100811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
|
32
|
Trident cold atmospheric plasma blocks three cancer survival pathways to overcome therapy resistance. Proc Natl Acad Sci U S A 2021; 118:2107220118. [PMID: 34916286 DOI: 10.1073/pnas.2107220118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Therapy resistance is responsible for most cancer-related death and is mediated by the unique ability of cancer cells to leverage metabolic conditions, signaling molecules, redox status, and other pathways for their survival. Interestingly, many cancer survival pathways are susceptible to disturbances in cellular reactive oxygen species (ROS) and may therefore be disrupted by exogenous ROS. Here, we explore whether trident cold atmospheric plasma (Tri-CAP), a gas discharge with exceptionally low-level ROS, could inhibit multiple cancer survival pathways together in a murine cell line model of therapy-resistant chronic myeloid leukemia (CML). We show that Tri-CAP simultaneously disrupts three cancer survival pathways of redox deregulation, glycolysis, and proliferative AKT/mTOR/HIF-1α signaling in this cancer model. Significantly, Tri-CAP blockade induces a very high rate of apoptotic death in CML cell lines and in primary CD34+ hematopoietic stem and progenitor cells from CML patients, both harboring the therapy-resistant T315I mutation. In contrast, nonmalignant controls are minimally affected by Tri-CAP, suggesting it selectively targets resistant cancer cells. We further demonstrate that Tri-CAP elicits similar lethality in human melanoma, breast cancer, and CML cells with disparate, resistant mechanisms and that it both reduces tumor formation in two mouse models and improves survival of tumor-bearing mice. For use in patients, administration of Tri-CAP may be extracorporeal for hematopoietic stem cell transplantation therapy, transdermal, or through its activated solution for infusion therapy. Collectively, our results suggest that Tri-CAP represents a potent strategy for disrupting cancer survival pathways and overcoming therapy resistance in a variety of malignancies.
Collapse
|
33
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
34
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
35
|
Abdelshaheed MM, Fawzy IM, El-Subbagh HI, Youssef KM. Piperidine nucleus in the field of drug discovery. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00335-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Piperidine is an essential heterocyclic system and a pivotal cornerstone in the production of drugs. Piperidine byproducts showed several important pharmacophoric features and are being utilized in different therapeutic applications.
Main text
Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.
Conclusions
This review article sheds a light on the most recent studies proving the importance of piperidine nucleus in the field of drug discovery.
Collapse
|
36
|
Wu Q, Berglund AE, Etame AB. The Impact of Epigenetic Modifications on Adaptive Resistance Evolution in Glioblastoma. Int J Mol Sci 2021; 22:8324. [PMID: 34361090 PMCID: PMC8347012 DOI: 10.3390/ijms22158324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a highly lethal cancer that is universally refractory to the standard multimodal therapies of surgical resection, radiation, and chemotherapy treatment. Temozolomide (TMZ) is currently the best chemotherapy agent for GBM, but the durability of response is epigenetically dependent and often short-lived secondary to tumor resistance. Therapies that can provide synergy to chemoradiation are desperately needed in GBM. There is accumulating evidence that adaptive resistance evolution in GBM is facilitated through treatment-induced epigenetic modifications. Epigenetic alterations of DNA methylation, histone modifications, and chromatin remodeling have all been implicated as mechanisms that enhance accessibility for transcriptional activation of genes that play critical roles in GBM resistance and lethality. Hence, understanding and targeting epigenetic modifications associated with GBM resistance is of utmost priority. In this review, we summarize the latest updates on the impact of epigenetic modifications on adaptive resistance evolution in GBM to therapy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| |
Collapse
|
37
|
Stemness-Suppressive Effect of Bibenzyl from Dendrobium ellipsophyllum in Human Lung Cancer Stem-Like Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5516655. [PMID: 34349823 PMCID: PMC8328707 DOI: 10.1155/2021/5516655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Cancer stem-like cells (CSCs) are key mediators driving tumor initiation, metastasis, therapeutic failure, and subsequent cancer relapse. Thus, targeting CSCs has recently emerged as a potential strategy to improve chemotherapy. In this study, the anticancer activity and stemness-regulating capacity of 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (TDB), a bibenzyl extracted from Dendrobium ellipsophyllum, are revealed in CSCs of various human lung cancer cells. Culture with TDB (5-10 μM) strongly abolished tumor-initiating cells in lung cancer H460, H23, and A549 cells in both anchorage-dependent and anchorage-independent colony formation assays. Through the 3D single-spheroid formation model, attenuation of self-renewal capacity was observed in CSC-enriched populations treated with 1-10 μM TDB for 7 days. Flow cytometry analysis confirmed the attenuation of %cell overexpressing CD133, a CSC biomarker, in TDB-treated lung cancer spheroids. TDB at 5-10 μM remarkably suppressed regulatory signals of p-Akt/Akt, p-GSK3β/GSK3β, and β-catenin corresponding to the downregulated mRNA level of stemness transcription factors including Nanog, Oct4, and Sox2. Moreover, the antiapoptosis Bcl-2 and Mcl-1 proteins, which are downstream molecules of Akt signaling, were evidently decreased in CSC-enriched spheroids after culture with TDB (1-10 μM) for 24 h. Interestingly, the diminution of Akt expression by specific siAkt effectively reversed suppressive activity of TDB targeting on the CSC phenotype in human lung cancer cells. These findings provide promising evidence of the inhibitory effect of TDB against lung CSCs via suppression of Akt/GSK3β/β-catenin cascade and related proteins, which would facilitate the development of this bibenzyl natural compound as a novel CSC-targeted therapeutic approach for lung cancer treatment.
Collapse
|
38
|
Koshkin V, De Oliveira MB, Peng C, Ailles LE, Liu G, Covens A, Krylov SN. Multi-drug-resistance efflux in cisplatin-naive and cisplatin-exposed A2780 ovarian cancer cells responds differently to cell culture dimensionality. Mol Clin Oncol 2021; 15:161. [PMID: 34295468 PMCID: PMC8273925 DOI: 10.3892/mco.2021.2323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/02/2021] [Indexed: 01/20/2023] Open
Abstract
A primary reason for chemotherapy failure is chemoresistance, which is driven by various mechanisms. Multi-drug resistance (MDR) is one such mechanism that is responsible for drug extrusion from the intracellular space. MDR can be intrinsic and thus, may pre-exist the first application of chemotherapy. However, MDR may also be acquired during tumor exposure to chemotherapeutic agents. To understand whether cell clustering can influence intrinsic and acquired MDR, the present study assessed cultured monolayers (representing individual cells) and spheroids (representing clusters) formed by cisplatin-naïve (intrinsic MDR) and cisplatin-exposed (acquired MDR) lines of ovarian cancer A2780 cells by determining the cytometry of reaction rate constant (CRRC). MDR efflux was characterized using accurate and robust cell number vs. MDR efflux rate constant (kMDR) histograms. Both cisplatin-naïve and cisplatin-exposed monolayer cells presented unimodal histograms; the histogram of cisplatin-exposed cells was shifted towards a higher kMDR value suggesting greater MDR activity. Spheroids of cisplatin-naïve cells presented a bimodal histogram indicating the presence of two subpopulations with different MDR activity. In contrast, spheroids of cisplatin-exposed cells presented a unimodal histogram qualitatively similar to that of the monolayers of cisplatin-exposed cells but with a moderate shift towards greater MDR activity. A flow-cytometry assessment of multidrug resistance-associated protein 1 transporter levels in monolayers and dissociated spheroids revealed distributions similar to those of kMDR, thus, suggesting a plausible molecular mechanism for the observed differences in MDR activity. The observed greater effect of cell clustering on intrinsic rather than in acquired MDR can help guide the development of new therapeutic strategies targeting clusters of circulating tumor cells.
Collapse
Affiliation(s)
- Vasilij Koshkin
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | | | - Chun Peng
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Laurie E Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medicine, Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada
| | - Allan Covens
- Sunnybrook Odette Cancer Centre, Toronto, Ontario M4N 3M5, Canada
| | - Sergey N Krylov
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
39
|
De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol 2021; 95:2279-2297. [PMID: 34003341 PMCID: PMC8241801 DOI: 10.1007/s00204-021-03063-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last decade, important clinical benefits have been achieved in cancer patients by using drug-targeting strategies. Nevertheless, drug resistance is still a major problem in most cancer therapies. Epithelial-mesenchymal plasticity (EMP) and tumour microenvironment have been described as limiting factors for effective treatment in many cancer types. Moreover, epithelial-to-mesenchymal transition (EMT) has also been associated with therapy resistance in many different preclinical models, although limited evidence has been obtained from clinical studies and clinical samples. In this review, we particularly deepen into the mechanisms of which intermediate epithelial/mesenchymal (E/M) states and its interconnection to microenvironment influence therapy resistance. We also describe how the use of bioinformatics and pharmacogenomics will help to figure out the biological impact of the EMT on drug resistance and to develop novel pharmacological approaches in the future.
Collapse
Affiliation(s)
- Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Sivan Izraely
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain.,Universidade da Coruña (UDC), Coruña, Spain
| | - Isaac P Witz
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain. .,Universidade da Coruña (UDC), Coruña, Spain.
| |
Collapse
|
40
|
Ahmad IM, Dafferner AJ, O’Connell KA, Mehla K, Britigan BE, Hollingsworth MA, Abdalla MY. Heme Oxygenase-1 Inhibition Potentiates the Effects of Nab-Paclitaxel-Gemcitabine and Modulates the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:2264. [PMID: 34066839 PMCID: PMC8125955 DOI: 10.3390/cancers13092264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Tumor hypoxia plays an active role in promoting tumor progression, malignancy, and resistance to therapy in PDAC. We present evidence that nab-paclitaxel-gemcitabine (NPG) and/or a hypoxic tumor microenvironment (TME) up-regulate heme oxygenase-1 (HO-1), providing a survival advantage for tumors. Using PDAC cells in vitro and a PDAC mouse model, we found that NPG chemotherapy up-regulated expression of HO-1 in PDAC cells and increased its nuclear translocation. Inhibition of HO-1 with ZnPP and SnPP sensitized PDAC cells to NPG-induced cytotoxicity (p < 0.05) and increased apoptosis (p < 0.05). Additionally, HO-1 expression was increased in gemcitabine-resistant PDAC cells (p < 0.05), and HO-1 inhibition increased GEM-resistant PDAC sensitivity to NPG (p < 0.05). NPG combined with HO-1 inhibitor inhibited tumor size in an orthotopic model. In parallel, HO-1 inhibition abrogated the influx of macrophages and FoxP3+ cells, while increasing the proportion of CD8+ infiltration in the pancreatic tumors. These effects were mediated primarily by reducing expression of the immunosuppressive cytokine IL-10.
Collapse
Affiliation(s)
- Iman M. Ahmad
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Alicia J. Dafferner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Kelly A. O’Connell
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Kamiya Mehla
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Bradley E. Britigan
- Veterans Affairs Medical Center-Nebraska Western Iowa, Department of Internal Medicine and Research Service, Omaha, NE 68105, USA;
| | - Michael A. Hollingsworth
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Maher Y. Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
41
|
Peraldo-Neia C, Massa A, Vita F, Basiricò M, Raggi C, Bernabei P, Ostano P, Casorzo L, Panero M, Leone F, Cavalloni G, Aglietta M. A Novel Multidrug-Resistant Cell Line from an Italian Intrahepatic Cholangiocarcinoma Patient. Cancers (Basel) 2021; 13:cancers13092051. [PMID: 33922695 PMCID: PMC8123022 DOI: 10.3390/cancers13092051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Intrahepatic cholangiocarcinoma (ICC) has limited prognosis and therapies. The first-line gemcitabine-based therapy provided poor benefits in terms of survival due to the development of resistance. Gemcitabine-resistance mechanisms were studied on pancreatic cancer models or cell lines derived from ICC patients of Eastern countries. Since ICC has different etiology and genetic/molecular characteristics depending on the ethnicity, appropriate preclinical models that recapitulate their biology are required. Thus, we aimed to establish and characterize an Italian ICC cell line, named 82.3. Cells were isolated from a patient-derived xenograft. After one year, immunophenotypical, biological, genetic, molecular features, and in vivo tumorigenicity in NOD/SCID mice were investigated. Furthermore, 82.3 cells displayed resistance to gemcitabine, 5-fluorouracil, carboplatin, and oxaliplatin. This model could be exploited either to investigate drug resistance mechanisms or to test alternative drugs through the identification of suitable targets to overcome drug resistance. Abstract Chemotherapy resistance is a relevant clinical issue in tumor treatment, in particular in biliary tract carcinoma (BTC), for which there are no effective therapies, neither in the first nor in the second line. The development of chemoresistant cell lines as experimental models to investigate the mechanisms of resistance and identify alternative druggable pathways is mandatory. In BTC, in which genetics and biological behavior depend on the etiology, ethnicity, and anatomical site of origin, the creation of models that better recapitulate these characteristics is even more crucial. Here we have established and characterized an intrahepatic cholangiocarcinoma (iCCA) cell line derived from an Italian patient, called 82.3. Cells were isolated from a patient-derived xenograft (PDX) and, after establishment, immunophenotypic, biological, genetic, molecular characteristics, and tumorigenicity in vivo in NOD/SCID mice were investigated. 82.3 cells exhibited epithelial morphology and cell markers (EPCAM, CK7, and CK19); they also expressed different cancer stem markers (CD44, CD133, CD49b, CD24, Stro1, PAX6, FOXA2, OCT3/4), α–fetoprotein and under anchorage-independent and serum-free conditions were capable of originating cholangiospheres. The population doubling time was approximately 53 h. In vitro, they demonstrated a poor ability to migrate; in vivo, 82.3 cells retained their tumorigenicity, with a long latency period (16 weeks). Genetic identity using DNA fingerprinting analysis revealed 16 different loci, and the cell line was characterized by a complex hyperdiploid karyotype. Furthermore, 82.3 cells showed cross-resistance to gemcitabine, 5-fluorouracil, carboplatin, and oxaliplatin; in fact, their genetic profile showed that 60% of genes (n = 168), specific for drug resistance and related to the epithelial-mesenchymal transition, were deregulated in 82.3 cells compared to a control iCCA cell line sensitive to chemotherapeutics. RNA sequencing analysis revealed the enrichment for genes associated with epithelial to mesenchymal transition (EMT), vasculature development, and extracellular matrix (ECM) remodeling, underlining an aggressive phenotype. In conclusion, we have created a new iCCA cell line of Caucasian origin: this could be exploited as a preclinical model to study drug resistance mechanisms and to identify alternative therapies to improve the prognosis of this tumor type.
Collapse
Affiliation(s)
- Caterina Peraldo-Neia
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy; (C.P.-N.); (P.O.)
| | - Annamaria Massa
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy; (A.M.); (M.B.); (M.A.)
| | - Francesca Vita
- Department of Oncology, University of Torino, 10126 Torino, Italy;
| | - Marco Basiricò
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy; (A.M.); (M.B.); (M.A.)
- Department of Oncology, University of Torino, 10126 Torino, Italy;
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy;
| | - Paola Bernabei
- Flow Cytometry Center, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy;
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy; (C.P.-N.); (P.O.)
| | - Laura Casorzo
- Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy; (L.C.); (M.P.)
| | - Mara Panero
- Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy; (L.C.); (M.P.)
| | - Francesco Leone
- Department of Oncology, Nuovo Ospedale degli Infermi, Azienda Sanitaria Locale Biella, 13875 Ponderano (Biella), Italy;
| | - Giuliana Cavalloni
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy; (A.M.); (M.B.); (M.A.)
- Correspondence:
| | - Massimo Aglietta
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy; (A.M.); (M.B.); (M.A.)
- Department of Oncology, University of Torino, 10126 Torino, Italy;
| |
Collapse
|
42
|
Low HB, Wong ZL, Wu B, Kong LR, Png CW, Cho YL, Li CW, Xiao F, Xin X, Yang H, Loo JM, Lee FYX, Tan IBH, DasGupta R, Shen HM, Schwarz H, Gascoigne NRJ, Goh BC, Xu X, Zhang Y. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun 2021; 12:2284. [PMID: 33863904 PMCID: PMC8052345 DOI: 10.1038/s41467-021-22638-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Drug resistance is a major obstacle to the treatment of most human tumors. In this study, we find that dual-specificity phosphatase 16 (DUSP16) regulates resistance to chemotherapy in nasopharyngeal carcinoma, colorectal cancer, gastric and breast cancer. Cancer cells expressing higher DUSP16 are intrinsically more resistant to chemotherapy-induced cell death than cells with lower DUSP16 expression. Overexpression of DUSP16 in cancer cells leads to increased resistance to cell death upon chemotherapy treatment. In contrast, knockdown of DUSP16 in cancer cells increases their sensitivity to treatment. Mechanistically, DUSP16 inhibits JNK and p38 activation, thereby reducing BAX accumulation in mitochondria to reduce apoptosis. Analysis of patient survival in head & neck cancer and breast cancer patient cohorts supports DUSP16 as a marker for sensitivity to chemotherapy and therapeutic outcome. This study therefore identifies DUSP16 as a prognostic marker for the efficacy of chemotherapy, and as a therapeutic target for overcoming chemoresistance in cancer.
Collapse
Affiliation(s)
- Heng Boon Low
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Zhen Lim Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Bangyuan Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chun-Wei Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fengchun Xiao
- Department of Pathology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Xin
- Department of Mathematics, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jia Min Loo
- Genome Institute of Singapore, Agency of Science Technology and Research (A*Star), Singapore, Singapore
| | - Fiona Yi Xin Lee
- Division of Medical Oncology, National Cancer Center, Singapore, Singapore
| | - Iain Bee Huat Tan
- Division of Medical Oncology, National Cancer Center, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore, Agency of Science Technology and Research (A*Star), Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Herbert Schwarz
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaohong Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
43
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
44
|
Wang J, Dubiel D, Wu Y, Cheng Y, Wolf DA, Dubiel W. CSN7B defines a variant COP9 signalosome complex with distinct function in DNA damage response. Cell Rep 2021; 34:108662. [PMID: 33503427 DOI: 10.1016/j.celrep.2020.108662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mammalian COP9 signalosome (CSN) exists as two variant complexes containing either CSN7A or CSN7B paralogs of unknown functional specialization. Constructing knockout cells, we found that CSN7A and CSN7B have overlapping functions in the deneddylation of cullin-RING ubiquitin ligases. Nevertheless, CSNCSN7B has a unique function in DNA double-strand break (DSB) sensing, being selectively required for ataxia telangiectasia mutated (ATM)-dependent formation of NBS1S343p and γH2AX as well as DNA-damage-induced apoptosis triggered by mitomycin C and ionizing radiation. Live-cell microscopy revealed rapid recruitment of CSN7B but not CSN7A to DSBs. Resistance of CSN7B knockout cells to DNA damage is explained by the failure to deneddylate an upstream DSB signaling component, causing a switch in DNA repair pathway choice with increased utilization of non-homologous end joining over homologous recombination. In mice, CSN7B knockout tumors are resistant to DNA-damage-inducing chemotherapy, thus providing an explanation for the poor prognosis of tumors with low CSN7B expression.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Dawadschargal Dubiel
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Yanmeng Wu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Yabin Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Dieter A Wolf
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China.
| | - Wolfgang Dubiel
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China; Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
45
|
Sharma N, Singhal M, Kumari RM, Gupta N, Manchanda R, Syed A, Bahkali AH, Nimesh S. Diosgenin Loaded Polymeric Nanoparticles with Potential Anticancer Efficacy. Biomolecules 2020; 10:E1679. [PMID: 33339083 PMCID: PMC7765552 DOI: 10.3390/biom10121679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
This study aims to determine the anticancer efficacy of diosgenin encapsulated poly-glycerol malate co-dodecanedioate (PGMD) nanoparticles. Diosgenin loaded PGMD nanoparticles (variants 7:3 and 6:4) were synthesized by the nanoprecipitation method. The synthesis of PGMD nanoparticles was systematically optimized employing the Box-Behnken design and taking into account the influence of various independent variables such as concentrations of each PGMD, diosgenin and PF-68 on the responses such as size and PDI of the particles. Mathematical modeling was done using the Quadratic second order modeling method and response surface analysis was undertaken to elucidate the factor-response relationship. The obtained size of PGMD 7:3 and PGMD 6:4 nanoparticles were 133.6 nm and 121.4 nm, respectively, as measured through dynamic light scattering (DLS). The entrapment efficiency was in the range of 77-83%. The in vitro drug release studies showed diffusion and dissolution controlled drug release pattern following Korsmeyer-Peppas kinetic model. Furthermore, in vitro morphological and cytotoxic studies were performed to evaluate the toxicity of synthesized drug loaded nanoparticles in model cell lines. The IC50 after 48 h was observed to be 27.14 µM, 15.15 µM and 13.91 µM for free diosgenin, PGMD 7:3 and PGMD 6:4 nanoparticles, respectively, when administered in A549 lung carcinoma cell lines.
Collapse
Affiliation(s)
- Nikita Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| | - Monisha Singhal
- Department of Biotechnology, IIS (Deemed to be University), Jaipur 302020, India; (M.S.); (N.G.)
| | - R. Mankamna Kumari
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| | - Nidhi Gupta
- Department of Biotechnology, IIS (Deemed to be University), Jaipur 302020, India; (M.S.); (N.G.)
| | - Romila Manchanda
- School of Basic and Applied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India; (N.S.); (R.M.K.)
| |
Collapse
|
46
|
Ilan Y. Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Front Digit Health 2020; 2:569178. [PMID: 34713042 PMCID: PMC8521820 DOI: 10.3389/fdgth.2020.569178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) digital health systems have drawn much attention over the last decade. However, their implementation into medical practice occurs at a much slower pace than expected. This paper reviews some of the achievements of first-generation AI systems, and the barriers facing their implementation into medical practice. The development of second-generation AI systems is discussed with a focus on overcoming some of these obstacles. Second-generation systems are aimed at focusing on a single subject and on improving patients' clinical outcomes. A personalized closed-loop system designed to improve end-organ function and the patient's response to chronic therapies is presented. The system introduces a platform which implements a personalized therapeutic regimen and introduces quantifiable individualized-variability patterns into its algorithm. The platform is designed to achieve a clinically meaningful endpoint by ensuring that chronic therapies will have sustainable effect while overcoming compensatory mechanisms associated with disease progression and drug resistance. Second-generation systems are expected to assist patients and providers in adopting and implementing of these systems into everyday care.
Collapse
|
47
|
Lim JH, Choi KH, Kim SY, Park CS, Kim SM, Park KC. Patient-Derived, Drug-Resistant Colon Cancer Cells Evade Chemotherapeutic Drug Effects via the Induction of Epithelial-Mesenchymal Transition-Mediated Angiogenesis. Int J Mol Sci 2020; 21:ijms21207469. [PMID: 33050525 PMCID: PMC7589077 DOI: 10.3390/ijms21207469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells can exhibit resistance to different anticancer drugs by acquiring enhanced anti-apoptotic potential, improved DNA injury resistance, diminished enzymatic inactivation, and enhanced permeability, allowing for cell survival. However, the genetic mechanisms for these effects are unknown. Therefore, in this study, we obtained drug-sensitive HT-29 cells (commercially) and drug-resistant cancer cells (derived from biochemically and histologically confirmed colon cancer patients) and performed microarray analysis to identify genetic differences. Cellular proliferation and other properties were determined after treatment with oxaliplatin, lenvatinib, or their combination. In vivo, tumor volume and other properties were examined using a mouse xenograft model. The oxaliplatin and lenvatinib cotreatment group showed more significant cell cycle arrest than the control group and groups treated with either agent alone. Oxaliplatin and lenvatinib cotreatment induced the most significant tumor shrinkage in the xenograft model. Drug-resistant and metastatic colon cancer cells evaded the anticancer drug effects via angiogenesis. These findings present a breakthrough strategy for treating drug-resistant cancer.
Collapse
Affiliation(s)
- Jin Hong Lim
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Kyung Hwa Choi
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 463-712, Korea;
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soo Young Kim
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Cheong Soo Park
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seok-Mo Kim
- Gangnam Severance Hospital, Department of Surgery Yonsei, University College of Medicine 211 Eonjuro, Gangnam-gu, Seoul 135-720, Korea; (J.H.L.); (S.Y.K.); (C.S.P.)
- Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Korea
- Correspondence: (S.-M.K.); (K.C.P.)
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
- Correspondence: (S.-M.K.); (K.C.P.)
| |
Collapse
|
48
|
EZH2 knockdown in tamoxifen-resistant MCF-7 cells unravels novel targets for regaining sensitivity towards tamoxifen. Breast Cancer 2020; 28:355-367. [PMID: 32990923 DOI: 10.1007/s12282-020-01166-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Acquired resistance to drug involves multilayered genetic and epigenetic regulation. Inhibition of EZH2 has proven to reverse the tamoxifen resistance back to the sensitive state in breast cancer. However, the molecular players involved in EZH2-mediated effects on tamoxifen-resistant MCF-7 cells are unknown. This study was conducted to understand the global change in proteome profile of tamoxifen-resistant MCF-7 breast cancer cells upon EZH2 knockdown. METHODS Tamoxifen resistance MCF-7 breast cancer cells were established using increasing concentrations of 4-hydroxy tamoxifen. Using label free proteomics approach, we studied the alteration in total proteome in resistant cells as well as cells transfected with siEZH2 in comparison to sensitive and cells transfected with non-targeting siRNA. RESULTS Here, we report list of proteins that were previously not recognized for their role in tamoxifen resistance and hold a close association with breast cancer patient survival. Proteins Annexin A2, CD44, nucleosome assembly protein 1, and lamin A/C were among the most upregulated protein in tamoxifen-resistant cells that were found to be abrogated upon EZH2 knockdown. The study suggests the involvement for various proteins in acquiring resistance towards tamoxifen and anticipates further research for investigating their therapeutic potentials. CONCLUSION Overall, we propose that targeting EZH2 or the molecules down the cascade might be helpful in reacquiring sensitivity to tamoxifen in breast cancer.
Collapse
|
49
|
The Anticancer Activity for the Bumetanide-Based Analogs via Targeting the Tumor-Associated Membrane-Bound Human Carbonic Anhydrase-IX Enzyme. Pharmaceuticals (Basel) 2020; 13:ph13090252. [PMID: 32961906 PMCID: PMC7558282 DOI: 10.3390/ph13090252] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
The membrane-bound human carbonic anhydrase (hCA) IX is widely recognized as a marker of tumor hypoxia and a prognostic factor within several human cancers. Being undetected in most normal tissues, hCA-IX implies the pharmacotherapeutic advent of reduced off-target adverse effects. We assessed the potential anticancer activity of bumetanide-based analogues to inhibit the hCA-IX enzymatic activity and cell proliferation of two solid cancer cell lines, namely kidney carcinoma (A-498) and bladder squamous cell carcinoma (SCaBER). Bumetanide analogues efficiently inhibit the target hCA-IX in low nanomolar activity (IC50 = 4.4–23.7 nM) and have an excellent selectivity profile (SI = 14.5–804) relative to the ubiquitous hCA-II isoform. Additionally, molecular docking studies provided insights into the compounds’ structure–activity relationship and preferential binding of small-sized as well as selective bulky ligands towards the hCA-IX pocket. In particular, 2,4-dihydro-1,2,4-triazole-3-thione derivative 9c displayed pronounced hCA-IX inhibitory activity and impressive antiproliferative activity on oncogenic A-498 kidney carcinoma cells and is being considered as a promising anticancer candidate. Future studies will aim to optimize this compound to fine-tune its anticancer activity as well as explore its potential through in-vivo preclinical studies.
Collapse
|
50
|
Bleker de Oliveira M, Koshkin V, Liu G, Krylov SN. Analytical Challenges in Development of Chemoresistance Predictors for Precision Oncology. Anal Chem 2020; 92:12101-12110. [PMID: 32790291 DOI: 10.1021/acs.analchem.0c02644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemoresistance, i.e., tumor insensitivity to chemotherapy, shortens life expectancy of cancer patients. Despite the availability of new treatment options, initial systemic regimens for solid tumors are dominated by a set of standard chemotherapy drugs, and alternative therapies are used only when a patient has demonstrated chemoresistance clinically. Chemoresistance predictors use laboratory parameters measured on tissue samples to predict the patient's response to chemotherapy and help to avoid application of chemotherapy to chemoresistant patients. Despite thousands of publications on putative chemoresistance predictors, there are only about a dozen predictors that are sufficiently accurate for precision oncology. One of the major reasons for inaccuracy of predictors is inaccuracy of analytical methods utilized to measure their laboratory parameters: an inaccurate method leads to an inaccurate predictor. The goal of this study was to identify analytical challenges in chemoresistance-predictor development and suggest ways to overcome them. Here we describe principles of chemoresistance predictor development via correlating a clinical parameter, which manifests disease state, with a laboratory parameter. We further classify predictors based on the nature of laboratory parameters and analyze advantages and limitations of different predictors using the reliability of analytical methods utilized for measuring laboratory parameters as a criterion. Our eventual focus is on predictors with known mechanisms of reactions involved in drug resistance (drug extrusion, drug degradation, and DNA damage repair) and using rate constants of these reactions to establish accurate and robust laboratory parameters. Many aspects and conclusions of our analysis are applicable to all types of disease biomarkers built upon the correlation of clinical and laboratory parameters.
Collapse
Affiliation(s)
- Mariana Bleker de Oliveira
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto M3J 1P3, Canada
| | - Vasilij Koshkin
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto M3J 1P3, Canada
| | - Geoffrey Liu
- Department of Medicine, Medical Oncology, Princess Margaret Cancer Centre, Toronto M5G 2M9, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto M3J 1P3, Canada
| |
Collapse
|