1
|
James G, Prasannan Geetha P, Thavarool Puthiyedathu S, Vattringal Jayadradhan RK. Applications of Actinobacteria in aquaculture: prospects and challenges. 3 Biotech 2023; 13:42. [PMID: 36643400 PMCID: PMC9834454 DOI: 10.1007/s13205-023-03465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Disease outbreaks due to improper culture management, poor water quality, and climate change are major concerns in aquaculture. Most of the aquatic pathogens are opportunistic and any imbalance in the host-pathogen-environment triad will result in a disease outbreak. The indiscriminate use of chemotherapeutics such as antibiotics to prevent diseases in aquaculture will lead to antimicrobial resistance in aquaculture. Hence, the demand for natural microbial strains which can be used as beneficial probiotics and bioaugmentors in fish farming systems has increased to ensure one health in aquaculture. Studies have proved the probiotic and bioremediation potential of several Actinobacterial species that can be applied in aquaculture. Actinobacteria, especially Streptomyces, can be applied in aquaculture for disease prevention, treatment, and bioremediation of organic and inorganic waste in the culture systems. The growth, immunity, and resistance towards aquatic pathogens in cultured organisms also get enhanced through their capability to release potent antimicrobial compounds, bioactive molecules, and novel enzymes. Their broad-spectrum antimicrobial and quorum quenching activity can be well exploited against quorum sensing biofilm forming aquatic pathogens. Even though they impart specific adverse effects like the production of off-flavour compounds, this could be controlled through proper management strategies. This review discusses the applications, challenges, and prospects of Actinobacteria in aquaculture. Research gaps are also highlighted, which may shed light on the existing complexities and should pave the way for their better understanding and utilisation in aquaculture.
Collapse
Affiliation(s)
- Greeshma James
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506 Kerala India
| | - Preena Prasannan Geetha
- Department of Marine Biosciences, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506 Kerala India
| | | | - Rejish Kumar Vattringal Jayadradhan
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506 Kerala India
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506 Kerala India
| |
Collapse
|
2
|
Li B, Chen J, Huang P, Weng T, Wen Y, Yang H, Liu Y, Xia L. Induction of attenuated Nocardia seriolae and their use as live vaccine trials against fish nocardiosis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:10-20. [PMID: 36162777 DOI: 10.1016/j.fsi.2022.09.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Nocardia seriolae, a Gram-positive facultative intercellular pathogen, has been identified as the causative agent of fish nocardiosis, causing substantial mortality and morbidity of a wide range of fish species. Looking into that fact, the effective vaccine against this pathogen is urgently needed to control the significant losses in aquaculture practices. In order to induct attenuated strains for developing the potential live vaccines, the mutagenic N. seriolae strain S-250 and U-20 were obtained from wild-type strain ZJ0503 through continuous passaging and ultraviolet (UV) irradiation, respectively. Additionally, the biological characteristic, virulence, stability, mediating immune response and supplying protective efficacy to hybrid snakehead of the S-250 and U-20 strains were determined in the present study. The results showed that U-20 strain displayed dramatic changes in morphological characteristic and significant decreased in the virulence to hybrid snakehead, while that of S-250 strain had no obvious different in comparison to ZJ0503 strain. When hybrid snakehead were intraperitoneally injected with ZJ0503, S-250 and U-20 strains at their respective sub-clinical dosage, the non-specific immunity parameters (serum LYZ, POD, ACP, AKP and SOD activities), specific antibody (IgM) titers production and immune-related genes (CC1, CC2, IL-1β, IL-8, TNFα, IFNγ, MHCIα, MHCIIα, CD4, CD8α, TCRα and TCRβ) expression were up-regulated, indicating that they were able to trigger humoral and cell-mediated immune responses. Furthermore, the protective efficacy in hybrid snakehead after vaccination with ZJ0503, S-250 and U-20 strains, in terms of relative percentage survival (RPS), were 28.85%, 56.89% and 89.65% respectively. Taken together, two attenuated N. seriolae strains S-250 and U-20 were obtained successfully and they could elicit strong immune response and supply protective efficacy to hybrid snakehead against N. seriolae, which suggested that these two attenuated strains were the potential candidates for live vaccine development to control fish nocardiosis in aquaculture.
Collapse
Affiliation(s)
- Bei Li
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jianlin Chen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | - Pujiang Huang
- Shenzhen Fishery Development and Research Center, Shenzhen, Guangdong, China
| | - Tingting Weng
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yiming Wen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Huiyuan Yang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yansheng Liu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| |
Collapse
|
3
|
Liu ZG, Dong JJ, Ke XL, Yi MM, Cao JM, Gao FY, Wang M, Ye X, Lu MX. Isolation, identification, and pathogenic characteristics of Nocardia seriolae in largemouth bass Micropterus salmoides. DISEASES OF AQUATIC ORGANISMS 2022; 149:33-45. [PMID: 35510819 DOI: 10.3354/dao03659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The largemouth bass Micropterus salmoides is an important freshwater aquaculture fish in China. Recently, largemouth bass at a fish farm in Guangdong province experienced an outbreak of a serious ulcer disease. As part of the investigations conducted to identify the aetiology and identify potentially effective control measures, we isolated a pathogenic bacterium (NK-1 strain) from the diseased fish. It was identified as Nocardia seriolae through morphological observation, physiological and biochemical analysis, and molecular identification, and its pathogenicity was verified by experimental infection. Pathological changes in the diseased fish included granulomatous lesions in the liver and spleen, destruction of renal tubules, necrosis of intestinal epithelial cells, infiltration of inflammatory cells in the brain, vacuolation of cells, and swelling and cracking of the mitochondria and endoplasmic reticulum. Bacterial detection using qPCR showed that the spleen and intestine were the main organs targeted by N. seriolae. The mortality of largemouth bass experimentally infected with N. seriolae at 21°C was significantly lower than that in fish infected at higher temperatures between 24 and 33°C; there were no significant differences in the levels of mortality at these higher temperatures. The level of mortality of largemouth bass infected with N. seriolae was lowest at a neutral water pH of 7 but increased significantly at higher and lower pH. Of the tested Chinese herbal medicines, Chinese sumac Galla chinensis and Chinese skullcap Scutellaria baicalensis exhibited the best antibacterial effects. This study lays a foundation for the clinical diagnosis and scientific control of ulcer disease in largemouth bass.
Collapse
Affiliation(s)
- Zhi-Gang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Han HJ, Kwak MJ, Ha SM, Yang SJ, Kim JD, Cho KH, Kim TW, Cho MY, Kim BY, Jung SH, Chun J. Genomic characterization of Nocardia seriolae strains isolated from diseased fish. Microbiologyopen 2018; 8:e00656. [PMID: 30117297 PMCID: PMC6436429 DOI: 10.1002/mbo3.656] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 11/24/2022] Open
Abstract
Members of the genus Nocardia are widespread in diverse environments; a wide range of Nocardia species are known to cause nocardiosis in several animals, including cat, dog, fish, and humans. Of the pathogenic Nocardia species, N. seriolae is known to cause disease in cultured fish, resulting in major economic loss. We isolated two N. seriolae strains, CK‐14008 and EM15050, from diseased fish and sequenced their genomes using the PacBio sequencing platform. To identify their genomic features, we compared their genomes with those of other Nocardia species. Phylogenetic analysis showed that N. seriolae shares a common ancestor with a putative human pathogenic Nocardia species. Moreover, N. seriolae strains were phylogenetically divided into four clusters according to host fish families. Through genome comparison, we observed that the putative pathogenic Nocardia strains had additional genes for iron acquisition. Dozens of antibiotic resistance genes were detected in the genomes of N. seriolae strains; most of the antibiotics were involved in the inhibition of the biosynthesis of proteins or cell walls. Our results demonstrated the virulence features and antibiotic resistance of fish pathogenic N. seriolae strains at the genomic level. These results may be useful to develop strategies for the prevention of fish nocardiosis.
Collapse
Affiliation(s)
- Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | | | - Sung-Min Ha
- ChunLab Inc., Seoul, Korea.,Laboratory of evolutionary bioinformatics, Seoul National University, Seoul, Korea
| | | | - Jin Do Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | | | | | - Mi Young Cho
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | | | - Sung-Hee Jung
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Jongsik Chun
- ChunLab Inc., Seoul, Korea.,Laboratory of evolutionary bioinformatics, Seoul National University, Seoul, Korea
| |
Collapse
|
5
|
Ho PY, Chen YC, Maekawa S, Hu HH, Tsai AW, Chang YF, Wang PC, Chen SC. Efficacy of recombinant protein vaccines for protection against Nocardia seriolae infection in the largemouth bass Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2018; 78:35-41. [PMID: 29665404 DOI: 10.1016/j.fsi.2018.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
A reverse vaccinology-based survey of potent antigens associated with fish nocardiosis was conducted using the largemouth bass, Micropterus salmoides, with an aim to develop subunit vaccines. The antigens selected from the virulent strain Nocardia seriolae 961113 include the gene products of NGL2579 (GAPDH), NGL5701 (MMP), NGL4377 (OCTase), NGL4486 (ABC transporter), NGL3372 (LLE), NGL3388 (GHf10), NGL6627 (Antigen-85), NGL6696 (Esterase), and NGL6936 (CBP). These antigens were heterologously expressed in E. coli BL21 (DE3) for recombinant protein production. Then fish were vaccinated was these antigens, boosted at 2 weeks, and challenged with N. seriolae at 6 weeks after vaccination. The relative protection survival assay revealed high and significant protection efficacies of 94.45, 50.00, and 44.45 in fish that received the NGL3388 (GHf10), NGL6936 (CBP), and NGL3372 (LLE) vaccines, respectively. There were no apparent relationships or differences in tissue lesions among the administered vaccines. The serum titers against the bacterial preparations were higher for all vaccinated groups than for the control group at 4 weeks after immunization. However, no significant difference in serum titer was found at 6 weeks after immunization. The results of this study demonstrate that subunit vaccines against fish nocardiosis have differential effects, but are highly promising for nocardial prophylaxis.
Collapse
Affiliation(s)
- Ping-Yueh Ho
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC
| | - Yao-Chung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC
| | - Shun Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC
| | - Hsiang-Hui Hu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC
| | - An-Wei Tsai
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, 14853, New York, United States
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC; Research Center for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
6
|
Maekawa S, Yoshida T, Wang PC, Chen SC. Current knowledge of nocardiosis in teleost fish. JOURNAL OF FISH DISEASES 2018; 41:413-419. [PMID: 29341219 DOI: 10.1111/jfd.12782] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Nocardia sp. is the causative agent of nocardiosis, a lethal granulomatous disease of the skin, muscle, and various inner tissues affecting various teleost and shellfish. Four species of Nocardia have been isolated from diseased fish and shellfish, namely Nocardia asteroides, Nocardia seriolae, Nocardia salmonicida and Nocardia crassostreae. Therefore, in fish aquaculture, nocardiosis has caused severe economic losses, especially in the Asian region. Considerable research has been performed, since the first report of identified Nocardia sp. in fish, to characterize Nocardia sp. and identify rapid detection techniques, immune response against infection and prophylactic approaches. In this review, the current state of knowledge about nocardiosis in fish has been presented, including the pathogenesis, diagnosis, host immune response and vaccine development.
Collapse
Affiliation(s)
- S Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - T Yoshida
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, Miyazaki University, Miyazaki, Japan
| | - P-C Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - S-C Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Science and Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|