1
|
Levengood H, Zhou Y, Zhang C. Advancements in plant transformation: from traditional methods to cutting-edge techniques and emerging model species. PLANT CELL REPORTS 2024; 43:273. [PMID: 39467894 DOI: 10.1007/s00299-024-03359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
The ability to efficiently genetically modify plant species is crucial, driving the need for innovative technologies in plant biotechnology. Existing plant genetic transformation systems include Agrobacterium-mediated transformation, biolistics, protoplast-based methods, and nanoparticle techniques. Despite these diverse methods, many species exhibit resistance to transformation, limiting the applicability of most published methods to specific species or genotypes. Tissue culture remains a significant barrier for most species, although other barriers exist. These include the infection and regeneration stages in Agrobacterium, cell death and genomic instability in biolistics, the creation and regeneration of protoplasts for protoplast-based methods, and the difficulty of achieving stable transformation with nanoparticles. To develop species-independent transformation methods, it is essential to address these transformation bottlenecks. This review examines recent advancements in plant biotechnology, highlighting both new and existing techniques that have improved the success rates of plant transformations. Additionally, several newly emerged plant model systems that have benefited from these technological advancements are also discussed.
Collapse
Affiliation(s)
- Hannah Levengood
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cankui Zhang
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Zeng X, Cao X, Zhao Q, Hou S, Hu X, Yang Z, Hao T, Zhao S, Yao Z. Isolation of Haustorium Protoplasts Optimized by Orthogonal Design for Transient Gene Expression in Phelipanche aegyptiaca. PLANTS (BASEL, SWITZERLAND) 2024; 13:2163. [PMID: 39124281 PMCID: PMC11314320 DOI: 10.3390/plants13152163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The efficient protoplast transient transformation system in plants is an important tool to study gene expression, metabolic pathways, and various mutagenic parameters, but it has not been established in Phelipanche aegyptiaca. As a root parasitic weed that endangers the growth of 29 species of plants in 12 families around the world, there is still no good control method for P. aegyptiaca. Even the parasitic mechanisms of P. aegyptiaca and the related genes regulating parasitism are not yet understood. In this study, by comparing the factors related to protoplast isolation and transfection, we developed the optimal protocol for protoplast isolation and transfection in Phelipanche aegyptiaca haustorium. The optimal protoplast yield and activity were 6.2 × 106 protoplasts/g fresh weight [FW] and 87.85%, respectively, by using 0.5 mol/L mannitol, enzyme concentrations of 2.5% cellulase R-10 and 0.8% Macerozyme R-10 at 24 °C for 4 h. At the same time, transfection efficiency of protoplasts was up to 78.49% when using 30 μg plasmid, 40% polyethylene glycol (PEG) concentration, 24 °C incubation temperature, and 20 min transfection time. This is the first efficient protoplasts' isolation and transient transformation system of Phelipanche aegyptiaca haustorium, laying a foundation for future studies on the gene function and mechanisms of haustorium formation in parasitic plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sifeng Zhao
- Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College, Shihezi University, Shihezi 832003, China; (X.Z.); (X.C.); (Q.Z.); (S.H.); (X.H.); (Z.Y.); (T.H.)
| | - Zhaoqun Yao
- Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Agriculture College, Shihezi University, Shihezi 832003, China; (X.Z.); (X.C.); (Q.Z.); (S.H.); (X.H.); (Z.Y.); (T.H.)
| |
Collapse
|
3
|
Stajič E. Improvements in Protoplast Isolation Protocol and Regeneration of Different Cabbage ( Brassica oleracea var. capitata L.) Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:3074. [PMID: 37687321 PMCID: PMC10489862 DOI: 10.3390/plants12173074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Protoplasts are a versatile tool in plant biotechnology since they can be used for basic biological studies as well as for breeding strategies based on genome editing. An efficient protoplast isolation protocol is essential for conducting protoplast-based studies. To optimize the protoplast isolation protocol in cabbage (Brassica oleracea var. capitata L.), different enzyme solutions were tested for the isolation of leaf mesophyll protoplasts. In our experiments, the combination of 0.5% Cellulase Onozuka RS and 0.1% Macerozyme R-10 showed the best result. The optimized protocol proved suitable for the isolation of protoplasts from five different cabbage cultivars with yields ranging from 2.38 to 4.63 × 106 protoplasts/g fresh weight (fw) and a viability of 93% or more. After three weeks in culture, protoplasts from all of the tested cultivars formed micro-calli, but further callus growth and shoot regeneration depended strongly on the genotype and regeneration protocol used. For shoot formation, 1 mg/L BAP in combination with auxin 0.2 mg/L NAA showed the best results with a regeneration of 23.5%. The results obtained will contribute to the development of different applications of cabbage protoplasts and facilitate the breeding process of this important horticultural crop.
Collapse
Affiliation(s)
- Ester Stajič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Yang D, Zhao Y, Liu Y, Han F, Li Z. A high-efficiency PEG-Ca 2+-mediated transient transformation system for broccoli protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:1081321. [PMID: 36578340 PMCID: PMC9790990 DOI: 10.3389/fpls.2022.1081321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Transient transformation of plant protoplasts is an important method for studying gene function, subcellular localization and plant morphological development. In this study, an efficient transient transformation system was established by optimizing the plasmid concentration, PEG4000 mass concentration and genotype selection, key factors that affect transformation efficiency. Meanwhile, an efficient and universal broccoli protoplast isolation system was established. Using 0.5% (w/v) cellulase R-10 and 0.1% (w/v) pectolyase Y-23 to hydrolyze broccoli cotyledons of three different genotypes for 3 h, the yield was more than 5×106/mL/g, and the viability was more than 95%, sufficient to meet the high standards for protoplasts to be used in various experiments. The average transformation efficiency of the two plasmid vectors PHG-eGFP and CP507-YFP in broccoli B1 protoplasts were 61.4% and 41.7%, respectively. Using this system, we successfully performed subcellular localization of the products of three target genes (the clubroot resistance gene CRa and two key genes regulated by glucosinolates, Bol029100 and Bol031350).The results showed that the products of all three genes were localized in the nucleus. The high-efficiency transient transformation system for broccoli protoplasts constructed in this study makes it possible to reliably acquire high-viability protoplasts in high yield. This research provides important technical support for international frontier research fields such as single-cell sequencing, spatial transcriptomics, plant somatic hybridization, gene function analysis and subcellular localization.
Collapse
|
5
|
Guedes JG, Leitão C, Meireles C, Duarte P, Sottomayor M. TARGETing Transcriptional Regulation in the Medicinal Plant Catharanthus roseus. Methods Mol Biol 2022; 2505:191-202. [PMID: 35732946 DOI: 10.1007/978-1-0716-2349-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transcriptional regulation is a central piece of the highly valuable monoterpenoid indole alkaloid pathway of C. roseus , and the ultimate tool for its understanding and manipulation. Here, we describe the adaptation of the TARGET methodology to identify specific and genome-wide leaf targets of C. roseus candidate transcription factors (TFs).
Collapse
Affiliation(s)
- Joana G Guedes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vila do Conde, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina Leitão
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Catarina Meireles
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Patrícia Duarte
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Mariana Sottomayor
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vila do Conde, Portugal.
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vila do Conde, Portugal.
| |
Collapse
|
6
|
Guedes JG, Guimarães AL, Carqueijeiro I, Gardner R, Bispo C, Sottomayor M. Isolation of Specialized Plant Cells by Fluorescence-Activated Cell Sorting. Methods Mol Biol 2022; 2469:193-200. [PMID: 35508840 DOI: 10.1007/978-1-0716-2185-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant organs are built of different cell types, characterized by specific transcription programs and metabolic profiles. The possibility of isolation of such cell types to perform differential transcriptomic, proteomic and metabolomic analyses is highly important to understand many aspects of plant physiology, namely, the structure and regulation of economically valuable specialized metabolic pathways. Here, we describe the isolation of idioblast leaf protoplasts of the medicinal plant Catharanthus roseus by fluorescence-activated cell sorting, taking advantage of the differential autofluorescence properties of those specialized cells.
Collapse
Affiliation(s)
- Joana G Guedes
- Biomedical Sciences Institute Abel Salazar, University of Porto, Porto, Portugal
- Investigation Center in Biodiversity and Genetic Resources, Universidade do Porto, Vairão, Portugal
| | | | - Inês Carqueijeiro
- EA2106 Plant Biomolecules and Biotechnology, University of Tours, Tours, France
| | - Rui Gardner
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Gulbenkian Science Institute, Oeiras, Portugal
| | - Cláudia Bispo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- UCSF Parnassus Flow CoLab, San Francisco, CA, USA
| | - Mariana Sottomayor
- CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
7
|
Ren R, Gao J, Yin D, Li K, Lu C, Ahmad S, Wei Y, Jin J, Zhu G, Yang F. Highly Efficient Leaf Base Protoplast Isolation and Transient Expression Systems for Orchids and Other Important Monocot Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:626015. [PMID: 33659015 PMCID: PMC7917215 DOI: 10.3389/fpls.2021.626015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/25/2021] [Indexed: 05/21/2023]
Abstract
Versatile protoplast platforms greatly facilitate the development of modern botany. However, efficient protoplast-based systems are still challenging for numerous horticultural plants and crops. Orchids are globally cultivated ornamental and medicinal monocot plants, but few efficient protoplast isolation and transient expression systems have been developed. In this study, we established a highly efficient orchid protoplast isolation protocol by selecting suitable source materials and optimizing the enzymatic conditions, which required optimal D-mannitol concentrations (0.4-0.6 M) combined with optimal 1.2% cellulose and 0.6% macerozyme, 5 μM of 2-mercaptoethanol and 6 h digestion. Tissue- and organ-specific protoplasts were successfully isolated from young leaves [∼3.22 × 106/g fresh weight (FW)], flower pedicels (∼5.26 × 106/g FW), and young root tips (∼7.66 × 105/g FW) of Cymbidium orchids. This protocol recommends the leaf base tissues (the tender part of young leaves attached to the stem) as better source materials. High yielding viable protoplasts were isolated from the leaf base of Cymbidium (∼2.50 × 107/g FW), Phalaenopsis (1.83 × 107/g FW), Paphiopedilum (1.10 × 107/g FW), Dendrobium (8.21 × 106/g FW), Arundina (3.78 × 106/g FW) orchids, and other economically important monocot crops including maize (Zea mays) (3.25 × 107/g FW) and rice (Oryza sativa) (4.31 × 107/g FW), which showed marked advantages over previous mesophyll protoplast isolation protocols. Leaf base protoplasts of Cymbidium orchids were used for polyethylene glycol (PEG)-mediated transfection, and a transfection efficiency of more than 80% was achieved. This leaf base protoplast system was applied successfully to analyze the CsDELLA-mediated gibberellin signaling in Cymbidium orchids. We investigated the subcellular localization of the CsDELLA-green fluorescent protein fusion and analyzed the role of CsDELLA in the regulation of gibberellin to flowering-related genes via efficient transient overexpression and gene silencing of CsDELLA in Cymbidium protoplasts. This protoplast isolation and transient expression system is the most efficient based on the documented results to date. It can be widely used for cellular and molecular studies in orchids and other economically important monocot crops, especially for those lacking an efficient genetic transformation system in vivo.
Collapse
Affiliation(s)
- Rui Ren
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dongmei Yin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Kai Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
8
|
Li Y, Min L, Zhang L, Hu Q, Wu Y, Li J, Xie S, Ma Y, Zhang X, Zhu L. Promoters of Arabidopsis Casein kinase I-like 2 and 7 confer specific high-temperature response in anther. PLANT MOLECULAR BIOLOGY 2018; 98:33-49. [PMID: 30145767 DOI: 10.1007/s11103-018-0760-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/30/2018] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE: (1) We systematically analyze the promoter activities of AtCKLs in various tissues; (2) AtCKL2 and AtCKL7 were expressed in early developmental anthers under high temperature (HT) conditions; (3) AtMYB24 may function as a positive regulator of AtCKL2 and AtCKL7 expression under HT. High temperature (HT) can seriously impede plant growth and development, causing severe loss of crop production. In Arabidopsis, AtCKL genes show high similarity to GhCKI, a gene reported to disrupt tapetal programmed cell death in cotton. However, most of AtCKL genes are not well characterized. Here, we systematically analyzed the expression patterns of AtCKLs in various tissues. The expression of AtCKL2 and AtCKL7 was induced in early anther development under HT, which is similar to the case of GhCKI. In silico analysis of AtCKL2 and AtCKL7 promoters indicated that four types of transcription factors (TFs) (MADS, NAC, WRKY and R2R3-MYB) might bind to AtCKL2 and AtCKL7 promoters. Furthermore, three MADS, three NAC, one WRKY, and three R2R3-MYB TFs were up-regulated in stage 1-8 anthers and three R2R3-MYB TFs were up-regulated in stage 9-10 anthers under HT, implying the important roles of R2R3-MYB genes in the response of anthers to HT. Among the R2R3-MYB genes, AtMYB24 showed the similar expression as AtCKL2 and AtCKL7 in the anthers under HT. Additionally, yeast one-hybrid and dual-luciferase reporter system assays verified that AtMYB24 could bind to AtCKL2 and AtCKL7 promoters and activate the expression of these two genes. In brief, this study provides the overall expression profiles of AtCKLs, useful information for unraveling the molecular mechanism of AtCKL2 and AtCKL7 gene expression in early anther development under HT, and important clues for elucidating the mechanism of transcriptional regulation of CKI genes in plant anther under HT, which are critical to the reduction of crop yield loss resulting from HT.
Collapse
Affiliation(s)
- Yaoyao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jie Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Sai Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
9
|
Abstract
The isolation of vacuoles is an essential step to unravel the important and complex functions of this organelle in plant physiology. Here, we describe a method for the isolation of vacuoles from Catharanthus roseus leaves involving a simple procedure for the isolation of protoplasts, and the application of a controlled osmotic/thermal shock to the naked cells, leading to the release of intact vacuoles, which are subsequently purified by density gradient centrifugation. The purity of the isolated intact vacuoles is assayed by microscopy, western blotting, and measurement of vacuolar (V)-H+-ATPase hydrolytic activity. Finally, membrane functionality and integrity is evaluated by measuring the generation of a transtonoplast pH gradient by the V-H+-ATPase and the V-H+-pyrophosphatase, also producing further information on vacuole purity.
Collapse
|
10
|
Carqueijeiro I, Sepúlveda LJ, Mosquera A, Payne R, Corbin C, Papon N, de Bernonville TD, Besseau S, Lanoue A, Glévarec G, Clastre M, St-Pierre B, Atehortùa L, Giglioli-Guivarc'h N, O'Connor SE, Oudin A, Courdavault V. Vacuole-Targeted Proteins: Ins and Outs of Subcellular Localization Studies. Methods Mol Biol 2018; 1789:33-54. [PMID: 29916070 DOI: 10.1007/978-1-4939-7856-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accurate and efficient demonstrations of protein localizations to the vacuole or tonoplast remain strict prerequisites to decipher the role of vacuoles in the whole plant cell biology and notably in defence processes. In this chapter, we describe a reliable procedure of protein subcellular localization study through transient transformations of Catharanthus roseus or onion cells and expression of fusions with fluorescent proteins allowing minimizing artefacts of targeting.
Collapse
Affiliation(s)
- Inês Carqueijeiro
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Liuda J Sepúlveda
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France.,Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Angela Mosquera
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France.,Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Richard Payne
- Department of Biological Chemistry, The John Innes Centre, Norwich Research Park, Norwich, UK
| | - Cyrielle Corbin
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Nicolas Papon
- EA3142 "Groupe d'Etude des Interactions Hôte-Pathogène", Université d'Angers, Angers, France
| | - Thomas Dugé de Bernonville
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Sébastien Besseau
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Arnaud Lanoue
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Gaëlle Glévarec
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Marc Clastre
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Benoit St-Pierre
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Nathalie Giglioli-Guivarc'h
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Sarah E O'Connor
- Department of Biological Chemistry, The John Innes Centre, Norwich Research Park, Norwich, UK
| | - Audrey Oudin
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France.
| |
Collapse
|