1
|
Aleksandrova YR, Nikolaeva NS, Shagina IA, Smirnova KD, Zubishina AA, Khlopotinin AI, Fakhrutdinov AN, Khokhlov AL, Begunov RS, Neganova ME. N-Aryl Benzimidazole and Benzotriazole Derivatives and Their Hybrids as Cytotoxic Agents: Design, Synthesis and Structure-Activity Relationship Studies. Molecules 2024; 29:5360. [PMID: 39598749 PMCID: PMC11596563 DOI: 10.3390/molecules29225360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
The era of chemotherapy began in the 1940s, which is the basis of traditional antitumor approaches and, being one of the most high-tech treatment methods, is still widely used to treat various types of cancer. A promising direction in modern medicinal chemistry is currently the creation of hybrid molecules containing several pharmacophore fragments of different structures. This strategy is successfully used to increase the therapeutic efficacy of cytotoxic agents and reduce side effects. In this work, we synthesized 10 1-aryl derivatives of benzimidazole and benzotriazole and 11 hybrids based on them. Among the compounds obtained, the most promising hybrid molecules were diphenylamines, containing an amino group and a benzotriazole cycle in the ortho position to the bridging NH group, which showed significant cytotoxic activity, excellent antioxidant properties and the ability to suppress the migration activity of tumor cells. Taken together, our results demonstrate that substituted diphenylamine-based bipharmacophoric compounds may serve as a promising platform for further optimization to obtain effective antitumor compounds.
Collapse
Affiliation(s)
- Yulia R. Aleksandrova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia; (Y.R.A.); (I.A.S.)
| | - Natalia S. Nikolaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Inna A. Shagina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia; (Y.R.A.); (I.A.S.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Karina D. Smirnova
- Faculty of Biology and Ecology, P. G. Demidov Yaroslavl State University, Yaroslavl 150003, Russia; (K.D.S.); (A.A.Z.); (A.I.K.)
| | - Alla A. Zubishina
- Faculty of Biology and Ecology, P. G. Demidov Yaroslavl State University, Yaroslavl 150003, Russia; (K.D.S.); (A.A.Z.); (A.I.K.)
| | - Alexander I. Khlopotinin
- Faculty of Biology and Ecology, P. G. Demidov Yaroslavl State University, Yaroslavl 150003, Russia; (K.D.S.); (A.A.Z.); (A.I.K.)
| | - Artem N. Fakhrutdinov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Alexander L. Khokhlov
- Institute of Pharmacy, Yaroslavl State Medical University of the Ministry of Health of the Russian Federation, Yaroslavl 150000, Russia;
| | - Roman S. Begunov
- Faculty of Biology and Ecology, P. G. Demidov Yaroslavl State University, Yaroslavl 150003, Russia; (K.D.S.); (A.A.Z.); (A.I.K.)
- Institute of Pharmacy, Yaroslavl State Medical University of the Ministry of Health of the Russian Federation, Yaroslavl 150000, Russia;
| | - Margarita E. Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia; (Y.R.A.); (I.A.S.)
| |
Collapse
|
2
|
Aslan M, Hsu EC, Liu S, Stoyanova T. Quantifying the invasion and migration ability of cancer cells with a 3D Matrigel drop invasion assay. Biol Methods Protoc 2021; 6:bpab014. [PMID: 34377838 PMCID: PMC8346651 DOI: 10.1093/biomethods/bpab014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Metastasis is the main cause of cancer-associated morbidity which will account for ∼ 600,000 deaths in the USA in 2021. Defining new mechanisms that drive cancer metastasis is vital for developing new therapeutic strategies and improving clinical outcomes for cancer patients. Herein, we describe a recently established 3D Matrigel drop invasion assay to measure cancer cell invasion and migration capability in vitro. This assay is a versatile and simple tool to test the ability of cells to invade and migrate, test the functional role of genes of interest in cell invasion and migration, analyze the localization of the target proteins at the cell invasion edge in situ, and screen drug effects on cancer cell invasion and migration.
Collapse
Affiliation(s)
- Merve Aslan
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, 3155 Porter Drive. Palo Alto, CA 94304, USA
| | - En-Chi Hsu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, 3155 Porter Drive. Palo Alto, CA 94304, USA
| | - Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, 3155 Porter Drive. Palo Alto, CA 94304, USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, 3155 Porter Drive. Palo Alto, CA 94304, USA
| |
Collapse
|
3
|
Hakim S, Craig JM, Koblinski JE, Clevenger CV. Inhibition of the Activity of Cyclophilin A Impedes Prolactin Receptor-Mediated Signaling, Mammary Tumorigenesis, and Metastases. iScience 2020; 23:101581. [PMID: 33083747 PMCID: PMC7549119 DOI: 10.1016/j.isci.2020.101581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/27/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Prolactin (PRL) and its receptor (PRLr) play important roles in the pathogenesis of breast cancer. Cyclophilin A (CypA) is a cis-trans peptidyl-prolyl isomerase (PPI) that is constitutively associated with the PRLr and facilitates the activation of the tyrosine kinase Jak2. Treatment with the non-immunosuppressive prolyl isomerase inhibitor NIM811 or CypA short hairpin RNA inhibited PRL-stimulated signaling, breast cancer cell growth, and migration. Transcriptomic analysis revealed that NIM811 inhibited two-thirds of the top 50 PRL-induced genes and a reduction in gene pathways associated with cancer cell signaling. In vivo treatment of NIM811 in a TNBC xenograft lessened primary tumor growth and induced central tumor necrosis. Deletion of CypA in the MMTV-PyMT mouse model demonstrated inhibition of tumorigenesis with significant reduction in lung and lymph node metastasis. The regulation of PRLr/Jak2-mediated biology by NIM811 demonstrates that a non-immunosuppressive prolyl isomerase inhibitor can function as a potential breast cancer therapeutic. CypA inhibition or knockdown blocks breast cancer cell signaling, growth, and migration NIM811 inhibited PRL-induced genes and gene pathways relevant to cancer signaling Deletion of CypA has shown reduction in tumorigenesis and metastasis in mice
Collapse
Affiliation(s)
- Shawn Hakim
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Justin M Craig
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Jennifer E Koblinski
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| | - Charles V Clevenger
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Hong JH, Kwak Y, Woo Y, Park C, Lee SA, Lee H, Park SJ, Suh Y, Suh BK, Goo BS, Mun DJ, Sanada K, Nguyen MD, Park SK. Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration. Sci Rep 2016; 6:31827. [PMID: 27546710 PMCID: PMC4992831 DOI: 10.1038/srep31827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022] Open
Abstract
Nuclear distribution element-like 1 (Ndel1) plays pivotal roles in diverse biological processes and is implicated in the pathogenesis of multiple neurodevelopmental disorders. Ndel1 function by regulating microtubules and intermediate filaments; however, its functional link with the actin cytoskeleton is largely unknown. Here, we show that Ndel1 interacts with TRIO-associated repeat on actin (Tara), an actin-bundling protein, to regulate cell movement. In vitro wound healing and Boyden chamber assays revealed that Ndel1- or Tara-deficient cells were defective in cell migration. Moreover, Tara overexpression induced the accumulation of Ndel1 at the cell periphery and resulted in prominent co-localization with F-actin. This redistribution of Ndel1 was abolished by deletion of the Ndel1-interacting domain of Tara, suggesting that the altered peripheral localization of Ndel1 requires a physical interaction with Tara. Furthermore, co-expression of Ndel1 and Tara in SH-SY5Y cells caused a synergistic increase in F-actin levels and filopodia formation, suggesting that Tara facilitates cell movement by sequestering Ndel1 at peripheral structures to regulate actin remodeling. Thus, we demonstrated that Ndel1 interacts with Tara to regulate cell movement. These findings reveal a novel role of the Ndel1-Tara complex in actin reorganization during cell movement.
Collapse
Affiliation(s)
- Ji-Ho Hong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yongdo Kwak
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Cana Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Haeryun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|