1
|
Vidlarova M, Rehulkova A, Stejskal P, Prokopova A, Slavik H, Hajduch M, Srovnal J. Recent Advances in Methods for Circulating Tumor Cell Detection. Int J Mol Sci 2023; 24:3902. [PMID: 36835311 PMCID: PMC9959336 DOI: 10.3390/ijms24043902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Circulating tumor cells (CTCs) are released from primary tumors and transported through the body via blood or lymphatic vessels before settling to form micrometastases under suitable conditions. Accordingly, several studies have identified CTCs as a negative prognostic factor for survival in many types of cancer. CTCs also reflect the current heterogeneity and genetic and biological state of tumors; so, their study can provide valuable insights into tumor progression, cell senescence, and cancer dormancy. Diverse methods with differing specificity, utility, costs, and sensitivity have been developed for isolating and characterizing CTCs. Additionally, novel techniques with the potential to overcome the limitations of existing ones are being developed. This primary literature review describes the current and emerging methods for enriching, detecting, isolating, and characterizing CTCs.
Collapse
Affiliation(s)
- Monika Vidlarova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Alona Rehulkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Andrea Prokopova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
| | - Hanus Slavik
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 67000 Strasbourg, France
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
2
|
Patel DA, Blay J. Seeding metastases: The role and clinical utility of circulating tumour cells. Tumour Biol 2021; 43:285-306. [PMID: 34690152 DOI: 10.3233/tub-210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peripheral human blood is a readily-accessible source of patient material in which circulating tumour cells (CTCs) can be found. Their isolation and characterization holds the potential to provide prognostic value for various solid cancers. Enumeration of CTCs from blood is becoming a common practice in informing prognosis and may guide therapy decisions. It is further recognized that enumeration alone does not capture perspective on the heterogeneity of tumours and varying functional abilities of the CTCs to interact with the secondary microenvironment. Characterizing the isolated CTCs further, in particular assessing their functional abilities, can track molecular changes in the disease progress. As a step towards identifying a suite of functional features of CTCs that could aid in clinical decisions, developing a CTC isolation technique based on extracellular matrix (ECM) interactions may provide a more solid foundation for isolating the cells of interest. Techniques based on size, charge, density, and single biomarkers are not sufficient as they underutilize other characteristics of cancer cells. The ability of cancer cells to interact with ECM proteins presents an opportunity to utilize their full character in capturing, and also allows assessment of the features that reveal how cells might behave at secondary sites during metastasis. This article will review some common techniques and recent advances in CTC capture technologies. It will further explore the heterogeneity of the CTC population, challenges they experience in their metastatic journey, and the advantages of utilizing an ECM-based platform for CTC capture. Lastly, we will discuss how tailored ECM approaches may present an optimal platform to capture an influential heterogeneous population of CTCs.
Collapse
Affiliation(s)
- Deep A Patel
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Gartrell BA, Roach M, Retter A, Sokol GH, Del Priore G, Scher HI. Phase II trial of SM-88, a cancer metabolism based therapy, in non-metastatic biochemical recurrent prostate cancer. Invest New Drugs 2020; 39:499-508. [PMID: 32924093 PMCID: PMC7960617 DOI: 10.1007/s10637-020-00993-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 11/27/2022]
Abstract
Background Androgen deprivation therapy (ADT) is a standard treatment for high-risk biochemically-recurrent, non-metastatic prostate cancer (BRPC) but is not curative and associated with toxicity. Racemetyrosine (SM-88) is an amino-acid analogue used with methoxsalen, phenytoin, and sirolimus (MPS) to enhance SM-88 activity. Method A phase 1b/2, open-label trial in BRPC and rising PSA. Patients were given daily SM-88 (230 mg BID), methoxsalen (10 mg), phenytoin (50 mg), and sirolimus (0.5 mg)). Outcome measures included changes in PSA, circulating tumor cells (CTCs) and imaging. Results 34 subjects were screened, 23 treated and 21 remained on study for ≥12 weeks. The median PSA was 6.4 ng/ml (range 1.7-80.1); doubling-time 6.2 months (range 1.4-36.6) and baseline testosterone 319.1 ng/ml (range 2.5-913.7). Median duration of therapy was 6.5 months (2.6-14.0). CTCs (median 48.5 cells/4 ml (range 15-268) at baseline) decreased a median of 65.3% in 18 of 19 patients. For patients who achieved an absolute CTC nadir count of <10 cells/4 ml (n = 10), disease control was 100% i.e. no metastases or PSA progression, while on trial (p = 0.005). PSA fell by ≥50% in 4.3% (1 subject). No patients developed metastatic disease while on treatment (metastases free survival =100%). There were no treatment-related adverse events (AEs) and quality of life was unchanged from baseline on the EORTC QLQ-C30 and QLQ-PR25. Testosterone levels rose slightly on SM-88 and were unrelated to efficacy or toxicity. Conclusions Use of SM-88 was associated with disease control while maintaining QOL. SM-88 may delay the need for ADT and the associated hormonal side effects. Larger trials are planned.Trial registration number, date of registration - NCT02796898, June 13, 2016.
Collapse
Affiliation(s)
- Benjamin A Gartrell
- Albert Einstein College of Medicine, Departments of Oncology and Urology, Montefiore Einstein Center for Cancer Care, Montefiore Medical Center, New York, NY, USA.
| | - Mack Roach
- Departments of Radiation Oncology & Urology, University of California San Francisco (UCSF) Helen Diller Family Comprehensive Cancer Center (HDFCC), San Francisco, CA, USA
| | - Avi Retter
- NY Cancer and Blood Specialist, East Setauket, NY, USA
| | - Gerald H Sokol
- Division of Clinical Pharmacology, Uniform Services University of the Health Sciences, Bethesda, MD, USA.,Florida Cancer Specialist and Research Institute, Fort Myers, FL, USA.,TYME Inc, New York, NY, USA
| | | | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
4
|
Miccio L, Cimmino F, Kurelac I, Villone MM, Bianco V, Memmolo P, Merola F, Mugnano M, Capasso M, Iolascon A, Maffettone PL, Ferraro P. Perspectives on liquid biopsy for label‐free detection of “circulating tumor cells” through intelligent lab‐on‐chips. VIEW 2020. [DOI: 10.1002/viw.20200034] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lisa Miccio
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | | | - Ivana Kurelac
- Dipartimento di Scienze Mediche e Chirurgiche Università di Bologna Bologna Italy
- Centro di Ricerca Biomedica Applicata (CRBA) Università di Bologna Bologna Italy
| | - Massimiliano M. Villone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale Università degli Studi di Napoli “Federico II” Napoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Vittorio Bianco
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Pasquale Memmolo
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Francesco Merola
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Martina Mugnano
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate Naples Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università degli Studi di Napoli Federico II Naples Italy
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate Naples Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università degli Studi di Napoli Federico II Naples Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale Università degli Studi di Napoli “Federico II” Napoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Pietro Ferraro
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| |
Collapse
|
5
|
Akpe V, Kim TH, Brown CL, Cock IE. Circulating tumour cells: a broad perspective. J R Soc Interface 2020; 17:20200065. [PMCID: PMC7423436 DOI: 10.1098/rsif.2020.0065] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/09/2020] [Indexed: 08/13/2023] Open
Abstract
Circulating tumour cells (CTCs) have recently been identified as valuable biomarkers for diagnostic and prognostic evaluations, as well for monitoring therapeutic responses to treatments. CTCs are rare cells which may be present as one CTC surrounded by approximately 1 million white blood cells and 1 billion red blood cells per millilitre of peripheral blood. Despite the various challenges in CTC detection, considerable progress in detection methods have been documented in recent times, particularly for methodologies incorporating nanomaterial-based platforms and/or integrated microfluidics. Herein, we summarize the importance of CTCs as biological markers for tumour detection, highlight their mechanism of cellular invasion and discuss the various challenges associated with CTC research, including vulnerability, heterogeneity, phenotypicity and size differences. In addition, we describe nanomaterial agents used for electrochemistry and surface plasmon resonance applications, which have recently been used to selectively capture cancer cells and amplify signals for CTC detection. The intrinsic properties of nanomaterials have also recently been exploited to achieve photothermal destruction of cancer cells. This review describes recent advancements and future perspectives in the CTC field.
Collapse
Affiliation(s)
- Victor Akpe
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Tak H. Kim
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Christopher L. Brown
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Ian E. Cock
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| |
Collapse
|
6
|
Wu J, Hu S, Zhang L, Xin J, Sun C, Wang L, Ding K, Wang B. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis. Theranostics 2020; 10:4544-4556. [PMID: 32292514 PMCID: PMC7150480 DOI: 10.7150/thno.40532] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Liquid biopsy is a convenient, fast, non-invasive and reproducible sampling method that can dynamically reflect the changes in tumor gene expression profile, and provide a robust basis for individualized therapy and early diagnosis of cancer. Circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) are the currently approved diagnostic biomarkers for screening cancer patients. In addition, tumor-derived extracellular vesicles (tdEVs), circulating tumor-derived proteins, circulating tumor RNA (ctRNA) and tumor-bearing platelets (TEPs) are other components of liquid biopsies with diagnostic potential. In this review, we have discussed the clinical applications of these biomarkers, and the factors that limit their implementation in routine clinical practice. In addition, the most recent developments in the isolation and analysis of circulating tumor biomarkers have been summarized, and the potential of non-blood liquid biopsies in tumor diagnostics has also been discussed.
Collapse
Affiliation(s)
- Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lihong Zhang
- Department of Biochemistry, College of Biomedical Sciences, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jinxia Xin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Liquan Wang
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Kefeng Ding
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
7
|
Yang C, Xia BR, Jin WL, Lou G. Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 2019; 19:341. [PMID: 31866766 PMCID: PMC6918690 DOI: 10.1186/s12935-019-1067-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Circulating tumor cells (CTCs) are a rare subset of cells found in the blood of patients with solid tumors, which function as a seed for metastases. Cancer cells metastasize through the bloodstream either as single migratory CTCs or as multicellular groupings-CTC clusters. The CTCs preserve primary tumor heterogeneity and mimic tumor properties, and may be considered as clinical biomarker, preclinical model, and therapeutic target. The potential clinical application of CTCs is being a component of liquid biopsy. CTCs are also good candidates for generating preclinical models, especially 3D organoid cultures, which could be applied in drug screening, disease modeling, genome editing, tumor immunity, and organoid biobanks. In this review, we summarize current knowledge on the value and promise of evolving CTC technologies and highlight cutting-edge research on CTCs in liquid biopsy, tumor metastasis, and organoid preclinical models. The study of CTCs offers broad pathways to develop new biomarkers for tumor patient diagnosis, prognosis, and response to therapy, as well as translational models accelerating oncologic drug development.
Collapse
Affiliation(s)
- Chang Yang
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| | - Bai-Rong Xia
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| | - Wei-Lin Jin
- 2Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People's Republic of China.,3National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai, 200240 People's Republic of China
| | - Ge Lou
- 1Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086 People's Republic of China
| |
Collapse
|
8
|
Dong H, Tulley S, Zhao Q, Cho L, Chen D, Pearl ML, Chen W. The propensity of invasive circulating tumor cells (iCTCs) in metastatic progression and therapeutic responsiveness. Cancer Med 2019; 8:3864-3874. [PMID: 31115187 PMCID: PMC6639176 DOI: 10.1002/cam4.2218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/01/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022] Open
Abstract
Circulating tumor cells (CTCs) are important clinical indicators of metastatic progression and treatment efficacy. However, because of their low number and heterogeneity, reliable patient-derived CTC models are not readily available. We report here the isolation and characterization of the invasive population of CTCs, iCTCs, from blood of 10 patients with epithelial ovarian cancer (EOC) and one pancreatic cancer patient based on the avidity of tumor cells toward an artificial collagen-based adhesion matrix (CAM), in comparison with tumor progenitor (TP) cells isolated from tumor cell lines, tumors and ascites from EOC patients. CAM-avid cells identified to be iCTCs were indistinguishable with TP cells using either functional CAM uptake or surface markers (seprase and CD44). In addition, iCTCs were characterized using peritoneal and spontaneous metastasis models in vivo to evaluate their metastatic propensity and therapeutic response. TP cells and iCTCs had a doubling time of about 34-42 hours. TP cells were rare (<3.5%) in most patient-derived specimens, however, iCTCs emigrated into blood, at a high frequency, 64.2% (n = 49). Approximately 500 patient-derived iCTCs recapitulated formation of iCTCs in mouse blood and formed micrometastases in the liver and/or lung, a degree of metastatic spread equivalent to the inoculation of 5 × 105 bulk tumor cells isolated from ascites and tumors. iCTCs were shown to be novel therapeutic targets for blocking metastasis using the reduced formation of iCTCs and micrometastases by RNAi, peptides, and monoclonal antibodies against seprase.
Collapse
Affiliation(s)
- Huan Dong
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| | - Shaun Tulley
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| | - Qiang Zhao
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| | - Leong Cho
- Stony Brook MedicineStony BrookNew York
| | | | | | - Wen‐Tien Chen
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| |
Collapse
|
9
|
Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P, Volinia S. Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset. Cancers (Basel) 2019; 11:cancers11040483. [PMID: 30959764 PMCID: PMC6521045 DOI: 10.3390/cancers11040483] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/16/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022] Open
Abstract
The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process. The analysis of CTCs in patients has recently received widespread attention because of its clinical implications, particularly for precision medicine. Accumulated evidence documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity. Indeed, the existence of a meta-stable or partial epithelial–mesenchymal transition (EMT) cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits, with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and generate metastases after xenotransplantation in immunodeficient mice. In the present review, we discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms underlying tumorigenicity.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Gianpiero Di Leva
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK.
| | - Adamo Pio d'Adamo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
10
|
De Rubis G, Rajeev Krishnan S, Bebawy M. Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis. Trends Pharmacol Sci 2019; 40:172-186. [PMID: 30736982 DOI: 10.1016/j.tips.2019.01.006] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
Liquid biopsies, comprising the noninvasive analysis of circulating tumor-derived material (the 'tumor circulome'), represent an innovative tool in precision oncology to overcome current limitations associated with tissue biopsies. Within the tumor circulome, circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) are the only components the clinical application of which is approved by the US Food and Drug Administration (FDA). Extracellular vesicles (EVs), circulating tumor RNA (ctRNA), and tumor-educated platelets (TEPs) are relatively new tumor circulome constituents with promising potential at each stage of cancer management. Here, we discuss the clinical applications of each element of the tumor circulome and the prevailing factors that currently limit their implementation in clinical practice. We also detail the most recent technological developments in the field, which demonstrate potential in improving the clinical value of liquid biopsies.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney Australia, PO Box 123, Broadway, NSW 2007, Australia
| | - Sabna Rajeev Krishnan
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney Australia, PO Box 123, Broadway, NSW 2007, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney Australia, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
11
|
Yu KH, Ricigliano M, McCarthy B, Chou JF, Capanu M, Cooper B, Bartlett A, Covington C, Lowery MA, O'Reilly EM. Circulating Tumor and Invasive Cell Gene Expression Profile Predicts Treatment Response and Survival in Pancreatic Adenocarcinoma. Cancers (Basel) 2018; 10:cancers10120467. [PMID: 30477242 PMCID: PMC6315371 DOI: 10.3390/cancers10120467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/17/2018] [Accepted: 11/16/2018] [Indexed: 12/24/2022] Open
Abstract
Previous studies have shown that pharmacogenomic modeling of circulating tumor and invasive cells (CTICs) can predict response of pancreatic ductal adenocarcinoma (PDAC) to combination chemotherapy, predominantly 5-fluorouracil-based. We hypothesized that a similar approach could be developed to predict treatment response to standard frontline gemcitabine with nab-paclitaxel (G/nab-P) chemotherapy. Gene expression profiles for responsiveness to G/nab-P were determined in cell lines and a test set of patient samples. A prospective clinical trial was conducted, enrolling 37 patients with advanced PDAC who received G/nab-P. Peripheral blood was collected prior to treatment, after two months of treatment, and at progression. The CTICs were isolated based on a phenotype of collagen invasion. The RNA was isolated, cDNA synthesized, and qPCR gene expression analyzed. Patients were most closely matched to one of three chemotherapy response templates. Circulating tumor and invasive cells' SMAD4 expression was measured serially. The CTICs were reliably isolated and profiled from peripheral blood prior to and during chemotherapy treatment. Individual patients could be matched to distinct response templates predicting differential responses to G/nab-P treatment. Progression free survival was significantly correlated to response prediction and ΔSMAD4 was significantly associated with disease progression. These findings support phenotypic profiling and ΔSMAD4 of CTICs as promising clinical tools for choosing effective therapy in advanced PDAC, and for anticipating disease progression.
Collapse
Affiliation(s)
- Kenneth H Yu
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | - Joanne F Chou
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Weill Cornell Medical College, New York, NY 10065, USA.
| | - Marinela Capanu
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | - Maeve A Lowery
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Eileen M O'Reilly
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
12
|
Zhang Y, Zarrabi K, Hou W, Madajewicz S, Choi M, Zucker S, Chen WT. Assessing Clinical Outcomes in Colorectal Cancer with Assays for Invasive Circulating Tumor Cells. Biomedicines 2018; 6:biomedicines6020069. [PMID: 29882767 PMCID: PMC6027397 DOI: 10.3390/biomedicines6020069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/17/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Colorectal carcinoma (CRC) is the second leading cause of cancer-related mortality. The goals of this study are to evaluate the association between levels of invasive circulating tumor cells (iCTCs) with CRC outcomes and to explore the molecular characteristics of iCTCs. Peripheral blood from 93 patients with Stage I⁻IV CRC was obtained and assessed for the detection and characterization of iCTCs using a functional collagen-based adhesion matrix (CAM) invasion assay. Patients were followed and assessed for overall survival. Tumor cells isolated by CAM were characterized using cell culture and microarray analyses. Of 93 patients, 88 (95%) had detectable iCTCs, ranging over 0⁻470 iCTCs/mL. Patients with Stage I⁻IV disease exhibited median counts of 0.0 iCTCs/mL (n = 6), 13.0 iCTCs/mL (n = 12), 41.0 iCTCs/mL (n = 12), and 133.0 iCTCs/mL (n = 58), respectively (p < 0.001). Kaplan⁻Meier curve analysis demonstrated a significant survival benefit in patients with low iCTC counts compared with in patients with high iCTC counts (log-rank p < 0.001). Multivariable Cox model analysis revealed that iCTC count was an independent prognostic factor of overall survival (p = 0.009). Disease stage (p = 0.01, hazard ratio 1.66; 95% confidence interval: 1.12⁻2.47) and surgical intervention (p = 0.03, HR 0.37; 95% CI: 0.15⁻0.92) were also independent prognostic factors. Gene expression analysis demonstrated the expression of both endothelial and tumor progenitor cell biomarkers in iCTCs. CAM-based invasion assay shows a high detection sensitivity of iCTCs that inversely correlated with overall survival in CRC patients. Functional and gene expression analyses showed the phenotypic mosaics of iCTCs, mimicking the survival capability of circulating endothelial cells in the blood stream.
Collapse
Affiliation(s)
- Yue Zhang
- Stony Brook Medicine, Stony Brook, NY 11794, USA.
- Division of Hematology/Oncology, Department of Medicine, Stony Brook University Hospital, Stony Brook, NY 11794, USA.
| | | | - Wei Hou
- Stony Brook Medicine, Stony Brook, NY 11794, USA.
| | - Stefan Madajewicz
- Stony Brook Medicine, Stony Brook, NY 11794, USA.
- Division of Hematology/Oncology, Department of Medicine, Stony Brook University Hospital, Stony Brook, NY 11794, USA.
| | - Minsig Choi
- Stony Brook Medicine, Stony Brook, NY 11794, USA.
- Division of Hematology/Oncology, Department of Medicine, Stony Brook University Hospital, Stony Brook, NY 11794, USA.
| | - Stanley Zucker
- Stony Brook Medicine, Stony Brook, NY 11794, USA.
- Division of Hematology/Oncology, Department of Medicine, Stony Brook University Hospital, Stony Brook, NY 11794, USA.
- Department of Medicine and Research, Veterans Affairs Medical Center, Northport, NY 11768, USA.
| | - Wen-Tien Chen
- Stony Brook Medicine, Stony Brook, NY 11794, USA.
- Vitatex Inc., 25 Health Sciences Drive, Stony Brook, NY 11790, USA.
| |
Collapse
|
13
|
Kuai JH, Wang Q, Zhang AJ, Zhang JY, Chen ZF, Wu KK, Hu XZ. Epidermal growth factor receptor-targeted immune magnetic liposomes capture circulating colorectal tumor cells efficiently. World J Gastroenterol 2018; 24:351-359. [PMID: 29391757 PMCID: PMC5776396 DOI: 10.3748/wjg.v24.i3.351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To compare the capacity of newly developed epidermal growth factor receptor (EGFR)-targeted immune magnetic liposomes (EILs) vs epithelial cell adhesion molecule (EpCAM) immunomagnetic beads to capture colorectal circulating tumor cells (CTCs).
METHODS EILs were prepared using a two-step method, and the magnetic and surface characteristics were confirmed. The efficiency of capturing colorectal CTCs as well as the specificity were compared between EILs and EpCAM magnetic beads.
RESULTS The obtained EILs had a lipid nanoparticle structure similar to cell membrane. Improved binding with cancer cells was seen in EILs compared with the method of coupling nano/microspheres with antibody. The binding increased as the contact time extended. Compared with EpCAM immunomagnetic beads, EILs captured more CTCs in peripheral blood from colorectal cancer patients. The captured cells showed consistency with clinical diagnosis and pathology. Mutation analysis showed same results between captured CTCs and cancer tissues.
CONCLUSION EGFR antibody-coated magnetic liposomes show high efficiency and specificity in capturing colorectal CTCs.
Collapse
Affiliation(s)
- Jing-Hua Kuai
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Qing Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Ai-Jun Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Jing-Yu Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Zheng-Feng Chen
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Kang-Kang Wu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| | - Xiao-Zhen Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Qingdao 266035, Shandong Province, China
| |
Collapse
|
14
|
Pearl ML, Dong H, Zhao Q, Tulley S, Dombroff MK, Chen WT. iCTC drug resistance (CDR) Testing ex vivo for evaluation of available therapies to treat patients with epithelial ovarian cancer. Gynecol Oncol 2017; 147:426-432. [DOI: 10.1016/j.ygyno.2017.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022]
|
15
|
Wu T, Cheng B, Fu L. Clinical Applications of Circulating Tumor Cells in Pharmacotherapy: Challenges and Perspectives. Mol Pharmacol 2017; 92:232-239. [PMID: 28356334 DOI: 10.1124/mol.116.108142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Screening for circulating tumor cells (CTCs) has been identified as one approach to ultrasensitive liquid biopsy in real-time monitoring of cancer patients. The detection of CTCs in peripheral blood from cancer patients is promising as a diagnostic tool; however, the application of CTCs in therapeutic treatment still faces serious challenges with respect to specificity and sensitivity. Here, we review the significant roles of CTCs in metastasis and the strengths and weaknesses of the currently available methods for CTC detection and characterization. Moreover, we discuss the clinical application of CTCs as markers for patient prognosis, and we specifically focus on the application of CTCs as indicators in cancer pharmacotherapy. Characterization of the detected CTCs will provide new biologic perspectives and clinical applications for the treatment of cancer patients with metastasis.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute (T.W., L.F.); and Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China (T.W., B.C.)
| | - Bin Cheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute (T.W., L.F.); and Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China (T.W., B.C.)
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute (T.W., L.F.); and Department of Oral Medicine, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China (T.W., B.C.)
| |
Collapse
|
16
|
Thiele JA, Bethel K, Králíčková M, Kuhn P. Circulating Tumor Cells: Fluid Surrogates of Solid Tumors. ANNUAL REVIEW OF PATHOLOGY 2017; 12:419-447. [PMID: 28135562 PMCID: PMC7846475 DOI: 10.1146/annurev-pathol-052016-100256] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of circulating tumor cells (CTCs) has demonstrated clinical validity as a prognostic tool based on enumeration, but since the introduction of this tool to the clinic in 2004, further clinical utility and widespread adoption have been limited. However, immense efforts have been undertaken to further the understanding of the mechanisms behind the biology and kinetics of these rare cells, and progress continues toward better applicability in the clinic. This review describes recent advances within the field, with a particular focus on understanding the biological significance of CTCs, and summarizes emerging methods for identifying, isolating, and interrogating the cells that may provide technical advantages allowing for the discovery of more specific clinical applications. Included is an atlas of high-definition images of CTCs from various cancer types, including uncommon CTCs captured only by broadly inclusive nonenrichment techniques.
Collapse
Affiliation(s)
- J-A Thiele
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic
| | - K Bethel
- Scripps Clinic Medical Group, Scripps Clinic, La Jolla, California 92121
| | - M Králíčková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, 301 00 Pilsen, Czech Republic
| | - P Kuhn
- Bridge Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089;
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
17
|
Alvarez Cubero MJ, Lorente JA, Robles-Fernandez I, Rodriguez-Martinez A, Puche JL, Serrano MJ. Circulating Tumor Cells: Markers and Methodologies for Enrichment and Detection. Methods Mol Biol 2017; 1634:283-303. [PMID: 28819860 DOI: 10.1007/978-1-4939-7144-2_24] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer is a leading cause of disease worldwide; however, nowadays many points of its initiation processes are unknown. In this chapter, we are focusing on the role of liquid biopsies in cancer detection and progression. CTCs are one of the main components of liquid biopsies, they represent a subset of tumor cells that have acquired the ability to disseminate from the primary tumor and intravasate to the circulatory system. The greatest challenge in the detection of CTCs is their rarity in the blood. Human blood consists of white blood cells (5-10 × 106/mL), red blood cells (5-9 × 109/mL), and platelets (2.5-4 × 108/mL); very few CTCs will be present even in patients with known metastatic disease, with often less than one CTC per mL of blood. CTCs are found in frequencies on the order of 1-10 CTCs per mL of whole blood in patients with metastatic disease, and it is reduced in half for non-metastatic stages. Therefore, accurate methodologies for their capture and analysis are really important. The main aim of the present chapter is to describe different methodologies for CTCs capturing and analysis.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Cell Count
- Cell Line, Tumor
- Cell Separation/instrumentation
- Cell Separation/methods
- Cell Survival
- Centrifugation, Density Gradient/methods
- Epithelial Cell Adhesion Molecule/genetics
- Epithelial Cell Adhesion Molecule/immunology
- Epithelial Cell Adhesion Molecule/metabolism
- Epithelial-Mesenchymal Transition/genetics
- Equipment Design
- ErbB Receptors/genetics
- ErbB Receptors/immunology
- ErbB Receptors/metabolism
- Ficoll/chemistry
- Fluorescent Dyes/chemistry
- Humans
- Immunoassay
- Keratins/genetics
- Keratins/immunology
- Keratins/metabolism
- Microfluidic Analytical Techniques/instrumentation
- Neoplasms/blood
- Neoplasms/diagnosis
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplastic Cells, Circulating/immunology
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Protein Binding
Collapse
Affiliation(s)
- M J Alvarez Cubero
- GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Av. de la Ilustración 114, 18016, Granada, Spain.
| | - J A Lorente
- GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Av. de la Ilustración 114, 18016, Granada, Spain
- Laboratory of Genetic Identification, University of Granada-Dept. of Legal Medicine - Faculty of Medicine, Granada, 18016, Spain
| | - I Robles-Fernandez
- GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Av. de la Ilustración 114, 18016, Granada, Spain
| | - A Rodriguez-Martinez
- GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Av. de la Ilustración 114, 18016, Granada, Spain
- Laboratory of Genetic Identification, University of Granada-Dept. of Legal Medicine - Faculty of Medicine, Granada, 18016, Spain
| | - J L Puche
- Integral Oncology Division, Clinical University Hospitals of Granada, Av. de las Fuerzas Armadas, 2, 18014, Granada, Spain
| | - M J Serrano
- GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Av. de la Ilustración 114, 18016, Granada, Spain
- Integral Oncology Division, Clinical University Hospitals of Granada, Av. de las Fuerzas Armadas, 2, 18014, Granada, Spain
| |
Collapse
|
18
|
Wang H, Wu X. Detection and Enumeration of Circulating Tumor Cells with Invasive Phenotype. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:133-141. [PMID: 28560672 DOI: 10.1007/978-3-319-55947-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells (CTCs) disseminate from solid primary cancers into the peripheral blood and lymphatic vessels and can lead to metastatic tumor development; thus, CTC assays are an important clinical tool for monitoring progression and evaluating prognosis in cancer. However, CTCs are limited in number and heterogeneous in their biological and physical properties, making their detection, isolation, and enumeration a major challenge. To overcome these difficulties, novel techniques have been developed to detect and enumerate CTCs with an invasive phenotype. In this chapter, we will summarize these recently developed methods and detail two novel methods for capturing and enriching CTCs on the basis of their viability and their invasive properties.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Xiangwei Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Hwang WL, Hwang KL, Miyamoto DT. The promise of circulating tumor cells for precision cancer therapy. Biomark Med 2016; 10:1269-1285. [PMID: 27924634 PMCID: PMC5827810 DOI: 10.2217/bmm-2016-0192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022] Open
Abstract
The rapidly growing array of therapeutic options in cancer requires informative biomarkers to guide the rational selection and precision application of appropriate therapies. Circulating biomarkers such as circulating tumor cells have immense potential as noninvasive, serial 'liquid biopsies' that may be more representative of the complete spectrum of a patient's individual malignancy than spatially and temporally restricted tumor biopsies. In this review, we discuss the current state-of-the-art in the isolation and molecular characterization of circulating tumor cells as well as their utility in a wide range of clinical applications such as prognostics, treatment monitoring and identification of novel therapeutic targets and resistance mechanisms to enable real-time adjustments in the clinical management of cancer.
Collapse
Affiliation(s)
- William L Hwang
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Katie L Hwang
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Medical Scientist Training Program, Harvard Medical School, Boston, MA 02115, USA
| | - David T Miyamoto
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| |
Collapse
|