1
|
Muralidharan A, Samoshkin A, Convertino M, Piltonen MH, Gris P, Wang J, Jiang C, Klares R, Linton A, Ji RR, Maixner W, Dokholyan NV, Mogil JS, Diatchenko L. Identification and characterization of novel candidate compounds targeting 6- and 7-transmembrane μ-opioid receptor isoforms. Br J Pharmacol 2021; 178:2709-2726. [PMID: 33782947 PMCID: PMC10697213 DOI: 10.1111/bph.15463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The μ-opioid receptor (μ receptor) is the primary target for opioid analgesics. The 7-transmembrane (TM) and 6TM μ receptor isoforms mediate inhibitory and excitatory cellular effects. Here, we developed compounds selective for 6TM- or 7TM-μ receptors to further our understanding of the pharmacodynamic properties of μ receptors. EXPERIMENTAL APPROACH We performed virtual screening of the ZINC Drug Now library of compounds using in silico 7TM- and 6TM-μ receptor structural models and identified potential compounds that are selective for 6TM- and/or 7TM-μ receptors. Subsequently, we characterized the most promising candidate compounds in functional in vitro studies using Be2C neuroblastoma transfected cells, behavioural in vivo pain assays using various knockout mice and in ex vivo electrophysiology studies. KEY RESULTS Our virtual screen identified 30 potential candidate compounds. Subsequent functional in vitro cellular assays shortlisted four compounds (#5, 10, 11 and 25) that demonstrated 6TM- or 7TM-μ receptor-dependent NO release. In in vivo pain assays these compounds also produced dose-dependent hyperalgesic responses. Studies using mice that lack specific opioid receptors further established the μ receptor-dependent nature of identified novel ligands. Ex vivo electrophysiological studies on spontaneous excitatory postsynaptic currents in isolated spinal cord slices also validated the hyperalgesic properties of the most potent 6TM- (#10) and 7TM-μ receptor (#5) ligands. CONCLUSION AND IMPLICATIONS Our novel compounds represent a new class of ligands for μ receptors and will serve as valuable research tools to facilitate the development of opioids with significant analgesic efficacy and fewer side-effects.
Collapse
Affiliation(s)
- Arjun Muralidharan
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Alexander Samoshkin
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
| | - Marino Convertino
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Marjo Hannele Piltonen
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Pavel Gris
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Jian Wang
- Department of Pharmacology, and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard Klares
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Alexander Linton
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - William Maixner
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pharmacology, and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Jeffrey S. Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Zhang DY, Wang J, Dokholyan NV. Prefusion spike protein stabilization through computational mutagenesis. Proteins 2020; 89:399-408. [PMID: 33231324 PMCID: PMC7753443 DOI: 10.1002/prot.26025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/07/2020] [Accepted: 11/21/2020] [Indexed: 01/02/2023]
Abstract
A novel severe acute respiratory syndrome (SARS)‐like coronavirus (SARS‐CoV‐2) has emerged as a human pathogen, causing global pandemic and resulting in over 400 000 deaths worldwide. The surface spike protein of SARS‐CoV‐2 mediates the process of coronavirus entry into human cells by binding angiotensin‐converting enzyme 2 (ACE2). Due to the critical role in viral‐host interaction and the exposure of spike protein, it has been a focus of most vaccines' developments. However, the structural and biochemical studies of the spike protein are challenging because it is thermodynamically metastable. Here, we develop a new pipeline that automatically identifies mutants that thermodynamically stabilize the spike protein. Our pipeline integrates bioinformatics analysis of conserved residues, motion dynamics from molecular dynamics simulations, and other structural analysis to identify residues that significantly contribute to the thermodynamic stability of the spike protein. We then utilize our previously developed protein design tool, Eris, to predict thermodynamically stabilizing mutations in proteins. We validate the ability of our pipeline to identify protein stabilization mutants through known prefusion spike protein mutants. We finally utilize the pipeline to identify new prefusion spike protein stabilization mutants.
Collapse
Affiliation(s)
- Dong Yan Zhang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA.,Departments of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
3
|
Van Den Driessche G, Fourches D. Adverse drug reactions triggered by the common HLA-B*57:01 variant: a molecular docking study. J Cheminform 2017; 9:13. [PMID: 28303164 PMCID: PMC5337232 DOI: 10.1186/s13321-017-0202-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human leukocyte antigen (HLA) surface proteins are directly involved in idiosyncratic adverse drug reactions. Herein, we present a structure-based analysis of the common HLA-B*57:01 variant known to be responsible for several HLA-linked adverse effects such as the abacavir hypersensitivity syndrome. METHODS First, we analyzed three X-ray crystal structures involving the HLA-B*57:01 protein variant, the anti-HIV drug abacavir, and different co-binding peptides present in the antigen-binding cleft. We superimposed the three complexes and showed that abacavir had no significant conformational variation whatever the co-binding peptide. Second, we self-docked abacavir in the HLA-B*57:01 antigen binding cleft with and without peptide using Glide. Third, we docked a small test set of 13 drugs with known ADRs and suspected HLA associations. RESULTS In the presence of an endogenous co-binding peptide, we found a significant stabilization (~2 kcal/mol) of the docking scores and identified several modified abacavir-peptide interactions indicating that the peptide does play a role in stabilizing the HLA-abacavir complex. Next, our model was used to dock a test set of 13 drugs at HLA-B*57:01 and measured their predicted binding affinities. Drug-specific interactions were observed at the antigen-binding cleft and we were able to discriminate the compounds with known HLA-B*57:01 liability from inactives. CONCLUSIONS Overall, our study highlights the relevance of molecular docking for evaluating and analyzing complex HLA-drug interactions. This is particularly important for virtual drug screening over thousands of HLA variants as other experimental techniques (e.g., in vitro HTS) and computational approaches (e.g., molecular dynamics) are more time consuming and expensive to conduct. As the attention for drugs' HLA liability is on the rise, we believe this work participates in encouraging the use of molecular modeling for reliably studying and predicting HLA-drug interactions. Graphical abstract.
Collapse
Affiliation(s)
- George Van Den Driessche
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC USA
| |
Collapse
|