1
|
Ma M, Wendehenne D, Philippot L, Hänsch R, Flemetakis E, Hu B, Rennenberg H. Physiological significance of pedospheric nitric oxide for root growth, development and organismic interactions. PLANT, CELL & ENVIRONMENT 2020; 43:2336-2354. [PMID: 32681574 DOI: 10.1111/pce.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is essential for plant growth and development, as well as interactions with abiotic and biotic environments. Its importance for multiple functions in plants means that tight regulation of NO concentrations is required. This is of particular significance in roots, where NO signalling is involved in processes, such as root growth, lateral root formation, nutrient acquisition, heavy metal homeostasis, symbiotic nitrogen fixation and root-mycorrhizal fungi interactions. The NO signal can also be produced in high levels by microbial processes in the rhizosphere, further impacting root processes. To explore these interesting interactions, in the present review, we firstly summarize current knowledge of physiological processes of NO production and consumption in roots and, thereafter, of processes involved in NO homeostasis in root cells with particular emphasis on root growth, development, nutrient acquisition, environmental stresses and organismic interactions.
Collapse
Affiliation(s)
- Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - David Wendehenne
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Robert Hänsch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Institute for Plant Biology, Technische Universität, Braunschweig, Germany
| | - Emmanouil Flemetakis
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Zhuang XL, Zhu ZL, Zhu JL, Lai SM, Gui LX, Lin MJ. Synchronous detection of vascular tension and nitric oxide release in pulmonary artery: A combined application of confocal wire myograph with confocal laser scanning microscopy. Vascular 2020; 28:619-628. [PMID: 32295493 DOI: 10.1177/1708538120917555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To detect the vascular tension and nitric oxide (NO) release synchronously in mice pulmonary artery, we perform two experiments and present a novel application of confocal wire myograph coupled with the confocal laser scanning microscopy. METHODS In the first experiment, viable endothelium-intact mouse pulmonary artery (outer diameter 100-300 μM) rings underwent a one-hour preincubation with a NO-specific fluorescent dye, 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate Calbiochem (2.5 μM), and then precontracted with phenylephrine (Phen, 10-6 M), and subsequently dilated in acetylcholine (ACh, 10-6 M - 10-4 M). The endothelium-dependent vasorelaxation and NO generation in pulmonary artery rings were simultaneously recorded. In the second experiment, after 30-min incubation with the former NO fluorescent dye, the qualified pulmonary artery rings were co-incubated for another 30 min with a nitric oxide synthase inhibitor, 10-4 M Nω-nitro-L-arginine-methyl-ester (L-NAME), and then pretreated with Phen (10-6 M) followed by ACh (10-5 M). The Ach-induced vasodilation and NO release were recorded simultaneously. RESULTS ACh (10-6 M - 10-4 M) promoted pulmonary artery relaxation and intracellular NO release in a dose-dependent manner. Additionally, L-NAME (10-4 M) significantly attenuated the vasodilatation and the intracellular NO release. CONCLUSIONS This combined application visually confirms that the synchronous changes in Ach induced vasodilation and NO release, which provides a new method for cardiovascular research.
Collapse
Affiliation(s)
- Xiao-Ling Zhuang
- Department of Physiology & Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Zhuang-Li Zhu
- Department of Physiology & Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jie-Ling Zhu
- Department of Physiology & Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Su-Mei Lai
- Department of Physiology & Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Long-Xin Gui
- Department of Physiology & Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mo-Jun Lin
- Department of Physiology & Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
3, 3'-Diaminobenzidine with dual o-phenylenediamine groups: two in one enables visual colorimetric detection of nitric oxide. Anal Bioanal Chem 2020; 412:2545-2550. [PMID: 32072207 DOI: 10.1007/s00216-020-02482-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) plays an important role in the generation of smog and ozone. Although great efforts have been made to determine NO by using o-phenylenediamine (OPD)-based fluorescent probes, more simple and reliable colorimetric assays for detection of NO are extremely scarce because a single OPD structure cannot produce enough optical absorption for chromogenesis. In this study, we report an innovative two-in-one visual colorimetric methodology. Commercially available 3,3'-diaminobenzidine (DAB) with two OPD structures in a single molecule is selected as the colorimetric probe, and it reacts with NO via diazo-coupling reaction to generate 1H,3'H-[5,5']bibenzotriazolyl because of the increase of conjugated double bonds, accompanying a distinct color change from colorless to brownish yellow. This two-in-one colorimetric assay can determine NO at a concentration as low as 3 ppm by the naked eye and 40 ppb by UV-vis spectrometry, which is the lowest limit of detection (LOD) among reported colorimetric assays for NO. Moreover, the present two-in-one visual colorimetric assay also has good selectivity toward NO over other common potential gas interferents such as CO2, NO2, NH3, N2, O2, and SO2. This present study provides a new insight for the design and development of assays for NO. Graphical abstract.
Collapse
|
4
|
Vishwakarma A, Wany A, Pandey S, Bulle M, Kumari A, Kishorekumar R, Igamberdiev AU, Mur LAJ, Gupta KJ. Current approaches to measure nitric oxide in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4333-4343. [PMID: 31106826 PMCID: PMC6736158 DOI: 10.1093/jxb/erz242] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is now established as an important signalling molecule in plants where it influences growth, development, and responses to stress. Despite extensive research, the most appropriate methods to measure and localize these signalling radicals are debated and still need investigation. Many confounding factors such as the presence of other reactive intermediates, scavenging enzymes, and compartmentation influence how accurately each can be measured. Further, these signalling radicals have short half-lives ranging from seconds to minutes based on the cellular redox condition. Hence, it is necessary to use sensitive and specific methods in order to understand the contribution of each signalling molecule to various biological processes. In this review, we summarize the current knowledge on NO measurement in plant samples, via various methods. We also discuss advantages, limitations, and wider applications of each method.
Collapse
Affiliation(s)
| | - Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sonika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mallesham Bulle
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Reddy Kishorekumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Luis A J Mur
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth, UK
| | - Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
5
|
Wany A, Kumari A, Gupta KJ. Nitric oxide is essential for the development of aerenchyma in wheat roots under hypoxic stress. PLANT, CELL & ENVIRONMENT 2017; 40:3002-3017. [PMID: 28857271 DOI: 10.1111/pce.13061] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 05/09/2023]
Abstract
In response to flooding/waterlogging, plants develop various anatomical changes including the formation of lysigenous aerenchyma for the delivery of oxygen to roots. Under hypoxia, plants produce high levels of nitric oxide (NO) but the role of this molecule in plant-adaptive response to hypoxia is not known. Here, we investigated whether ethylene-induced aerenchyma requires hypoxia-induced NO. Under hypoxic conditions, wheat roots produced NO apparently via nitrate reductase and scavenging of NO led to a marked reduction in aerenchyma formation. Interestingly, we found that hypoxically induced NO is important for induction of the ethylene biosynthetic genes encoding ACC synthase and ACC oxidase. Hypoxia-induced NO accelerated production of reactive oxygen species, lipid peroxidation, and protein tyrosine nitration. Other events related to cell death such as increased conductivity, increased cellulase activity, DNA fragmentation, and cytoplasmic streaming occurred under hypoxia, and opposing effects were observed by scavenging NO. The NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt) and ethylene biosynthetic inhibitor CoCl2 both led to reduced induction of genes involved in signal transduction such as phospholipase C, G protein alpha subunit, calcium-dependent protein kinase family genes CDPK, CDPK2, CDPK 4, Ca-CAMK, inositol 1,4,5-trisphosphate 5-phosphatase 1, and protein kinase suggesting that hypoxically induced NO is essential for the development of aerenchyma.
Collapse
Affiliation(s)
- Aakanksha Wany
- National Institute for Plant Genome Research, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute for Plant Genome Research, New Delhi, 110067, India
| | | |
Collapse
|