1
|
Steblyanko Y, Rajendraprasad G, Osswald M, Eibes S, Jacome A, Geley S, Pereira AJ, Maiato H, Barisic M. Microtubule poleward flux in human cells is driven by the coordinated action of four kinesins. EMBO J 2020; 39:e105432. [PMID: 33073400 PMCID: PMC7705458 DOI: 10.15252/embj.2020105432] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Mitotic spindle microtubules (MTs) undergo continuous poleward flux, whose driving force and function in humans remain unclear. Here, we combined loss-of-function screenings with analysis of MT-dynamics in human cells to investigate the molecular mechanisms underlying MT-flux. We report that kinesin-7/CENP-E at kinetochores (KTs) is the predominant driver of MT-flux in early prometaphase, while kinesin-4/KIF4A on chromosome arms facilitates MT-flux during late prometaphase and metaphase. Both these activities work in coordination with kinesin-5/EG5 and kinesin-12/KIF15, and our data suggest that the MT-flux driving force is transmitted from non-KT-MTs to KT-MTs by the MT couplers HSET and NuMA. Additionally, we found that the MT-flux rate correlates with spindle length, and this correlation depends on the establishment of stable end-on KT-MT attachments. Strikingly, we find that MT-flux is required to regulate spindle length by counteracting kinesin 13/MCAK-dependent MT-depolymerization. Thus, our study unveils the long-sought mechanism of MT-flux in human cells as relying on the coordinated action of four kinesins to compensate for MT-depolymerization and regulate spindle length.
Collapse
Affiliation(s)
| | | | - Mariana Osswald
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Susana Eibes
- Danish Cancer Society Research Center (DCRC)CopenhagenDenmark
| | - Ariana Jacome
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Stephan Geley
- Institute of PathophysiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - António J Pereira
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Helder Maiato
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Experimental Biology UnitDepartment of BiomedicineFaculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Marin Barisic
- Danish Cancer Society Research Center (DCRC)CopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Significant Interference with Porcine Epidemic Diarrhea Virus Pandemic and Classical Strain Replication in Small-Intestine Epithelial Cells Using an shRNA Expression Vector. Vaccines (Basel) 2019; 7:vaccines7040173. [PMID: 31684062 PMCID: PMC6963423 DOI: 10.3390/vaccines7040173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022] Open
Abstract
Porcine epidemic diarrhea (PED) re-emerged in China in 2010 and is now widespread. Evidence indicates that highly virulent porcine epidemic diarrhea virus (PEDV) strains belonging to genotype G2 caused a large-scale outbreak of diarrhea. Currently, vaccines derived from PEDV classical strains do not effectively prevent infection by virulent PEDV strains, and no specific drug is available to treat the disease. RNA interference (RNAi) is a novel and effective way to cure a wide range of viruses. We constructed three short hairpin RNA (shRNA)-expressing plasmids (shR-N307, shR-N463, and shR-N1071) directed against nucleocapsid (N) and determined their antiviral activities in intestine epithelial cells infected with a classical CV777 strain and LNCT2. We verified that shR-N307, shR-N463, and shR-N1071 effectively inhibited the expression of the transfected N gene in vitro, comparable to the control shRNA. We further demonstrated the shRNAs markedly reduced PEDV CV777 and LNCT2 replication upon downregulation of N production. Therefore, this study provides a new strategy for the design of antiviral methods against coronaviruses by targeting their processivity factors.
Collapse
|
3
|
Sarno E, Robison AJ. Emerging role of viral vectors for circuit-specific gene interrogation and manipulation in rodent brain. Pharmacol Biochem Behav 2018; 174:2-8. [PMID: 29709585 PMCID: PMC6369584 DOI: 10.1016/j.pbb.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/10/2018] [Accepted: 04/24/2018] [Indexed: 01/11/2023]
Abstract
Over the past half century, novel tools have allowed the characterization of myriad molecular underpinnings of neural phenomena including synaptic function, neurogenesis and neurodegeneration, membrane excitability, and neurogenetics/epigenetics. More recently, transgenic mice have made possible cell type-specific explorations of these phenomena and have provided critical models of many neurological and psychiatric diseases. However, it has become clear that many critical areas of study require tools allowing the study and manipulation of individual neural circuits within the brain, and viral vectors have come to the forefront in driving these circuit-specific studies. Here, we present a surface-level review of the general classes of viral vectors used for study of the brain, along with their suitability for circuit-specific studies. We then cover in detail a new long-lasting, retrograde expressing form of herpes simplex virus termed LT-HSV that has become highly useful in circuit-based studies. We detail some of its current uses and propose a variety of future uses for this critical new tool, including circuit-based transgene overexpression, gene editing, and gene expression profiling.
Collapse
Affiliation(s)
- Erika Sarno
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
4
|
Yuan L, Wu R, Liu H, Wen X, Huang X, Wen Y, Ma X, Yan Q, Huang Y, Zhao Q, Cao S. The NS3 and NS4A genes as the targets of RNA interference inhibit replication of Japanese encephalitis virus in vitro and in vivo. Gene 2016; 594:183-189. [PMID: 27593564 DOI: 10.1016/j.gene.2016.08.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/10/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that can cause acute encephalitis with a high fatality rate. RNA interference (RNAi) is a powerful tool to silence gene expression and a potential therapy for virus infection. In this study, the antiviral ability of eight shRNA expression plasmids targeting different sites of the NS3 and NS4A genes of JEV was determined in BHK21 cells and mice. The pGP-NS3-3 and pGP-NS4A-4 suppressed 93.9% and 82.0% of JEV mRNA in cells, respectively. The virus titer in cells was reduced approximately 950-fold by pretreating with pGP-NS3-4, and 640-fold by pretreating with pGP-NS4A-4. The results of western blot and immunofluorescence analysis showed JEV E protein and viral load in cells were remarkably inhibited by shRNA expression plasmids. The viral load in brains of mice pretreated with pGP-NS3-4 or pGP-NS4A-4 were reduced approximately 2400-fold and 800-fold, respectively, and the survival rate of mice challenged with JEV were 70% and 50%, respectively. However, the antiviral ability of shRNA expression plasmids was decreased over time. This study indicates that RNAi targeting of the NS3 and NS4A genes of JEV can sufficiently inhibit the replication of JEV in vitro and in vivo, and NS3 and NS4A genes might be potential targets of molecular therapy for JEV infection.
Collapse
Affiliation(s)
- Lei Yuan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Hanyang Liu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Xiaoping Ma
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China.
| |
Collapse
|