1
|
Liu C, Lin X, Jin Y, Pan J. Protocol for isolation and analysis of the leukemia stem cells in BCR-ABL-driven chronic myelogenous leukemia mice. STAR Protoc 2023; 4:102123. [PMID: 36853670 PMCID: PMC9958397 DOI: 10.1016/j.xpro.2023.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Practical procedures for sorting and analysis of leukemia stem cells (LSCs) are to improve our understanding of chronic myelogenous leukemia (CML). Here, we present a detailed magnetic-bead-based sorting and flow-cytometry-based analysis protocol for LSCs in BCR-ABL-driven CML mice. We describe steps for sorting and functional analysis of BCR-ABL-expressing c-Kit+ cells (GFP+c-Kit+) from CML mice as well as antibody staining and gating strategies for characterization of leukemia stem/progenitor cells and myeloid leukemia cells. For complete details on the use and execution of this protocol, please refer to Liu et al. (2022).1.
Collapse
Affiliation(s)
- Chang Liu
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoying Lin
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yanli Jin
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
2
|
Vuelta E, Ordoñez JL, Sanz DJ, Ballesteros S, Hernández-Rivas JM, Méndez-Sánchez L, Sánchez-Martín M, García-Tuñón I. CRISPR/Cas9-Directed Gene Trap Constitutes a Selection System for Corrected BCR/ABL Leukemic Cells in CML. Int J Mol Sci 2022; 23:ijms23126386. [PMID: 35742831 PMCID: PMC9224210 DOI: 10.3390/ijms23126386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic myeloid leukaemia (CML) is a haematological neoplasm driven by the BCR/ABL fusion oncogene. The monogenic aspect of the disease and the feasibility of ex vivo therapies in haematological disorders make CML an excellent candidate for gene therapy strategies. The ability to abolish any coding sequence by CRISPR-Cas9 nucleases offers a powerful therapeutic opportunity to CML patients. However, a definitive cure can only be achieved when only CRISPR-edited cells are selected. A gene-trapping approach combined with CRISPR technology would be an ideal approach to ensure this. Here, we developed a CRISPR-Trap strategy that efficiently inserts a donor gene trap (SA-CMV-Venus) cassette into the BCR/ABL-specific fusion point in the CML K562 human cell line. The trapping cassette interrupts the oncogene coding sequence and expresses a reporter gene that enables the selection of edited cells. Quantitative mRNA expression analyses showed significantly higher level of expression of the BCR/Venus allele coupled with a drastically lower level of BCR/ABL expression in Venus+ cell fractions. Functional in vitro experiments showed cell proliferation arrest and apoptosis in selected Venus+ cells. Finally, xenograft experiments with the selected Venus+ cells showed a large reduction in tumour growth, thereby demonstrating a therapeutic benefit in vivo. This study represents proof of concept for the therapeutic potential of a CRISPR-Trap system as a novel strategy for gene elimination in haematological neoplasms.
Collapse
Affiliation(s)
- Elena Vuelta
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José L. Ordoñez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - David J. Sanz
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
| | - Sandra Ballesteros
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
| | - Jesús M. Hernández-Rivas
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Lucía Méndez-Sánchez
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Manuel Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.S.-M.); (I.G.-T.)
| | - Ignacio García-Tuñón
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.S.-M.); (I.G.-T.)
| |
Collapse
|
3
|
Cressey P, Amrahli M, So PW, Gedroyc W, Wright M, Thanou M. Image-guided thermosensitive liposomes for focused ultrasound enhanced co-delivery of carboplatin and SN-38 against triple negative breast cancer in mice. Biomaterials 2021; 271:120758. [PMID: 33774525 DOI: 10.1016/j.biomaterials.2021.120758] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022]
Abstract
Triggerable nanocarriers have the potential to significantly improve the therapeutic index of existing anticancer agents. They allow for highly localised delivery and release of therapeutic cargos, reducing off-target toxicity and increasing anti-tumour activity. Liposomes may be engineered to respond to an externally applied stimulus such as focused ultrasound (FUS). Here, we report the first co-delivery of SN-38 (irinotecan's super-active metabolite) and carboplatin, using an MRI-visible thermosensitive liposome (iTSL). MR contrast enhancement was achieved by the incorporation of a gadolinium lipid conjugate in the liposome bilayer along with a dye-labelled lipid for near infrared fluorescence bioimaging. The resulting iTSL were successfully loaded with SN-38 in the lipid bilayer and carboplatin in the aqueous core - allowing co-delivery of both. The iTSL demonstrated both thermosensitivity and MR-imageability. In addition, they showed effective local targeted co-delivery of carboplatin and SN-38 after triggered release with brief FUS treatments. A single dosage induced significant improvement of anti-tumour activity (over either the free drugs or the iTSL without FUS-activation) in triple negative breast cancer xenografts tumours in mice.
Collapse
Affiliation(s)
- Paul Cressey
- School of Cancer & Pharmaceutical Sciences, King's College London, UK
| | - Maral Amrahli
- School of Cancer & Pharmaceutical Sciences, King's College London, UK
| | - Po-Wah So
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Wladyslaw Gedroyc
- Radiology Department, Imperial College Healthcare NHS Trust, London, UK
| | - Michael Wright
- School of Cancer & Pharmaceutical Sciences, King's College London, UK
| | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| |
Collapse
|
4
|
Clarke CJ, Holyoake TL. Preclinical approaches in chronic myeloid leukemia: from cells to systems. Exp Hematol 2017; 47:13-23. [PMID: 28017647 PMCID: PMC5333535 DOI: 10.1016/j.exphem.2016.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022]
Abstract
Advances in the design of targeted therapies for the treatment of chronic myeloid leukemia (CML) have transformed the prognosis for patients diagnosed with this disease. However, leukemic stem cell persistence, drug intolerance, drug resistance, and advanced-phase disease represent unmet clinical needs demanding the attention of CML investigators worldwide. The availability of appropriate preclinical models is essential to efficiently translate findings from the bench to the clinic. Here we review the current approaches taken to preclinical work in the CML field, including examples of commonly used in vivo models and recent successes from systems biology-based methodologies.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cell Line, Transformed
- Cell Transplantation
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Humans
- In Vitro Techniques
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Transduction, Genetic
- Transgenes
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Cassie J Clarke
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, UK
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, UK.
| |
Collapse
|