Pinheiro-Machado E, Faas MM, de Haan BJ, Moers C, Smink AM. Culturing Conditions Dictate the Composition and Pathways Enrichment of Human and Rat Perirenal Adipose-Derived Stromal Cells' Secretomes.
Stem Cell Rev Rep 2024;
20:1869-1888. [PMID:
38922529 PMCID:
PMC11445368 DOI:
10.1007/s12015-024-10748-w]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Understanding the impact of various culturing strategies on the secretome composition of adipose-derived stromal cells (ASC) enhances their therapeutic potential. This study investigated changes in the secretome of perirenal ASC (prASC) under different conditions: normoxia, cytokine exposure, high glucose, hypoxia, and hypoxia with high glucose. Using mass spectrometry and enrichment clustering analysis, we found that normoxia enriched pathways related to extracellular matrix (ECM) organization, platelet degranulation, and insulin-like growth factor (IGF) transport and uptake. Cytokine exposure influenced metabolism, vascular development, and protein processing pathways. High glucose affected the immune system, metabolic processes, and IGF transport and uptake. Hypoxia impacted immune and metabolic processes and protein processing. Combined hypoxia and high glucose influenced the immune system, IGF transport and uptake, and ECM organization. Our findings highlight the potential of manipulating culturing conditions to produce secretomes with distinct protein and functional profiles, tailoring therapeutic strategies accordingly.
Collapse