1
|
Brzezinski M, Argudo PG, Scheidt T, Yu M, Hosseini E, Kaltbeitzel A, Lemke EA, Michels JJ, Parekh SH. Protein-Specific Crowding Accelerates Aging in Protein Condensates. Biomacromolecules 2024. [PMID: 39648588 DOI: 10.1021/acs.biomac.4c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Macromolecular crowding agents, such as poly(ethylene glycol) (PEG), are often used to mimic cellular cytoplasm in protein assembly studies. Despite the perception that crowding agents have an inert nature, we demonstrate and quantitatively explore the diverse effects of PEG on the phase separation and maturation of protein condensates. We use two model proteins, the FG domain of Nup98 and bovine serum albumin (BSA), which represent an intrinsically disordered protein and a protein with a well-established secondary structure, respectively. PEG expedites the maturation of Nup98, enhancing denser protein packing and fortifying interactions, which hasten beta-sheet formation and subsequent droplet gelation. In contrast to BSA, PEG enhances droplet stability and limits the available solvent for protein solubilization, inducing only minimal changes in the secondary structure, pointing toward a significantly different role of the crowding agent. Strikingly, we detect almost no presence of PEG in Nup droplets, whereas PEG is moderately detectable within BSA droplets. Our findings demonstrate a nuanced interplay between crowding agents and proteins; PEG can accelerate protein maturation in liquid-liquid phase separation systems, but its partitioning and effect on protein structure in droplets is protein specific. This suggests that crowding phenomena are specific to each protein-crowding agent pair.
Collapse
Affiliation(s)
- Mateusz Brzezinski
- Department of Biomedical Engineering University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, Texas 78712, United States
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| | - Pablo G Argudo
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| | - Tom Scheidt
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz 55128, Germany
- Institute of Molecular Biology GmbH, Ackermannweg 4, Mainz 55128, Germany
| | - Miao Yu
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz 55128, Germany
- Institute of Molecular Biology GmbH, Ackermannweg 4, Mainz 55128, Germany
| | - Elnaz Hosseini
- Department of Biomedical Engineering University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, Texas 78712, United States
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| | - Anke Kaltbeitzel
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz 55128, Germany
- Institute of Molecular Biology GmbH, Ackermannweg 4, Mainz 55128, Germany
| | - Jasper J Michels
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| | - Sapun H Parekh
- Department of Biomedical Engineering University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, Texas 78712, United States
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
2
|
Sundara Rajan S, Ebegboni VJ, Pichling P, Ludwig KR, Jones TL, Chari R, Tran A, Kruhlak MJ, Loncarek J, Caplen NJ. Endogenous EWSR1 Exists in Two Visual Modalities That Reflect Its Associations with Nucleic Acids and Concentration at Sites of Active Transcription. Mol Cell Biol 2024; 44:103-122. [PMID: 38506112 PMCID: PMC10986767 DOI: 10.1080/10985549.2024.2315425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
EWSR1 is a member of the FET family of nucleic acid binding proteins that includes FUS and TAF15. Here, we report the systematic analysis of endogenous EWSR1's cellular organization in human cells. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vernon J. Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricio Pichling
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, Maryland, USA
| | - Andy Tran
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael J. Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jadranka Loncarek
- Centrosome Biology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Jiang B, Zhong Z, Gu L, Zhang X, Wei J, Ye C, Lin G, Qu G, Xiang X, Wen C, Hummel M, Bailey-Serres J, Wang Q, He C, Wang X, Lin C. Light-induced LLPS of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homeostasis in Arabidopsis. NATURE PLANTS 2023; 9:2042-2058. [PMID: 38066290 PMCID: PMC10724061 DOI: 10.1038/s41477-023-01580-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
Light regulates chlorophyll homeostasis and photosynthesis via various molecular mechanisms in plants. The light regulation of transcription and protein stability of nuclear-encoded chloroplast proteins have been extensively studied, but how light regulation of mRNA metabolism affects abundance of nuclear-encoded chloroplast proteins and chlorophyll homeostasis remains poorly understood. Here we show that the blue light receptor cryptochrome 2 (CRY2) and the METTL16-type m6A writer FIONA1 (FIO1) regulate chlorophyll homeostasis in response to blue light. In contrast to the CRY2-mediated photo-condensation of the mRNA adenosine methylase (MTA), photoexcited CRY2 co-condenses FIO1 only in the presence of the CRY2-signalling protein SUPPRESSOR of PHYTOCHROME A (SPA1). CRY2 and SPA1 synergistically or additively activate the RNA methyltransferase activity of FIO1 in vitro, whereas CRY2 and FIO1, but not MTA, are required for the light-induced methylation and translation of the mRNAs encoding multiple chlorophyll homeostasis regulators in vivo. Our study demonstrates that the light-induced liquid-liquid phase separation of the photoreceptor/writer complexes is commonly involved in the regulation of photoresponsive changes of mRNA methylation, whereas the different photo-condensation mechanisms of the CRY/FIO1 and CRY/MTA complexes explain, at least partially, the writer-specific functions in plant photomorphogenesis.
Collapse
Affiliation(s)
- Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Zhenhui Zhong
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyang Zhang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Guifang Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gaoping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xian Xiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenjin Wen
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Maureen Hummel
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Qin Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Xu Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, China.
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Boone BA, Ichino L, Wang S, Gardiner J, Yun J, Jami-Alahmadi Y, Sha J, Mendoza CP, Steelman BJ, van Aardenne A, Kira-Lucas S, Trentchev I, Wohlschlegel JA, Jacobsen SE. ACD15, ACD21, and SLN regulate the accumulation and mobility of MBD6 to silence genes and transposable elements. SCIENCE ADVANCES 2023; 9:eadi9036. [PMID: 37967186 PMCID: PMC10651127 DOI: 10.1126/sciadv.adi9036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here, we characterize two additional complex members: α-crystalline domain (ACD) containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher-order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of MBD5/6 complexes regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive a massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of the gene-silencing MBD5/6 complex and act to drive the formation of higher-order, dynamic assemblies at CG methylation (meCG) sites.
Collapse
Affiliation(s)
- Brandon A. Boone
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lucia Ichino
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Shuya Wang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jaewon Yun
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Cristy P. Mendoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bailey J. Steelman
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aliya van Aardenne
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sophia Kira-Lucas
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Isabelle Trentchev
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Steven E. Jacobsen
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Boone BA, Ichino L, Wang S, Gardiner J, Yun J, Jami-Alahmadi Y, Sha J, Mendoza CP, Steelman BJ, van Aardenne A, Kira-Lucas S, Trentchev I, Wohlschlegel JA, Jacobsen SE. ACD15, ACD21 and SLN regulate accumulation and mobility of MBD6 to silence genes and transposable elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554494. [PMID: 37662299 PMCID: PMC10473691 DOI: 10.1101/2023.08.23.554494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG-binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here we characterize two additional complex members: α-crystalline domain containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of complex components regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of gene silencing complexes that act to drive the formation of higher order, dynamic assemblies.
Collapse
Affiliation(s)
- Brandon A. Boone
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Lucia Ichino
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Shuya Wang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Translational Plant Biology, Department of Biology, Utrecht University, 3584CH, Utrecht, The Netherlands
| | - Jaewon Yun
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Cristy P. Mendoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bailey J. Steelman
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aliya van Aardenne
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sophia Kira-Lucas
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Isabelle Trentchev
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Steven E. Jacobsen
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), UCLA; Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Smart K, Kramer AH, Smart S, Hodgson L, Sharp DJ. Fidgetin-like 2 depletion enhances cell migration by regulating GEF-H1, RhoA, and FAK. Biophys J 2023; 122:3600-3610. [PMID: 36523161 PMCID: PMC10541466 DOI: 10.1016/j.bpj.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The microtubule (MT) cytoskeleton and its dynamics play an important role in cell migration. Depletion of the microtubule-severing enzyme Fidgetin-like 2 (FL2), a regulator of MT dynamics at the leading edge of migrating cells, leads to faster and more efficient cell migration. Here we examine how siRNA knockdown of FL2 increases cell motility. Förster resonance energy transfer biosensor studies shows that FL2 knockdown decreases activation of the p21 Rho GTPase, RhoA, and its activator GEF-H1. Immunofluorescence studies reveal that GEF-H1 is sequestered by the increased MT density resulting from FL2 depletion. Activation of the Rho GTPase, Rac1, however, does not change after FL2 knockdown. Furthermore, FL2 depletion leads to an increase in focal adhesion kinase activation at the leading edge, as shown by immunofluorescence studies, but no change in actin dynamics, as shown by fluorescence recovery after photobleaching. We believe these results expand our understanding of the role of MT dynamics in cell migration and offer new insights into RhoA and Rac1 regulation.
Collapse
Affiliation(s)
- Karishma Smart
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Adam H Kramer
- Microcures, Inc., Research and Development, Bronx, New York
| | | | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York.
| | - David J Sharp
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Microcures, Inc., Research and Development, Bronx, New York.
| |
Collapse
|
7
|
Kenworthy AK. What's past is prologue: FRAP keeps delivering 50 years later. Biophys J 2023; 122:3577-3586. [PMID: 37218127 PMCID: PMC10541474 DOI: 10.1016/j.bpj.2023.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) has emerged as one of the most widely utilized techniques to quantify binding and diffusion kinetics of biomolecules in biophysics. Since its inception in the mid-1970s, FRAP has been used to address an enormous array of questions including the characteristic features of lipid rafts, how cells regulate the viscosity of their cytoplasm, and the dynamics of biomolecules inside condensates formed by liquid-liquid phase separation. In this perspective, I briefly summarize the history of the field and discuss why FRAP has proven to be so incredibly versatile and popular. Next, I provide an overview of the extensive body of knowledge that has emerged on best practices for quantitative FRAP data analysis, followed by some recent examples of biological lessons learned using this powerful approach. Finally, I touch on new directions and opportunities for biophysicists to contribute to the continued development of this still-relevant research tool.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
8
|
Diot C, Richard CA, Risso-Ballester J, Martin D, Fix J, Eléouët JF, Sizun C, Rameix-Welti MA, Galloux M. Hardening of Respiratory Syncytial Virus Inclusion Bodies by Cyclopamine Proceeds through Perturbation of the Interactions of the M2-1 Protein with RNA and the P Protein. Int J Mol Sci 2023; 24:13862. [PMID: 37762166 PMCID: PMC10531356 DOI: 10.3390/ijms241813862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) RNA synthesis takes place in cytoplasmic viral factories also called inclusion bodies (IBs), which are membrane-less organelles concentrating the viral RNA polymerase complex. The assembly of IBs is driven by liquid-liquid phase separation promoted by interactions between the viral nucleoprotein N and the phosphoprotein P. We recently demonstrated that cyclopamine (CPM) inhibits RSV multiplication by disorganizing and hardening IBs. Although a single mutation in the viral transcription factor M2-1 induced resistance to CPM, the mechanism of action of CPM still remains to be characterized. Here, using FRAP experiments on reconstituted pseudo-IBs both in cellula and in vitro, we first demonstrated that CPM activity depends on the presence of M2-1 together with N and P. We showed that CPM impairs the competition between P and RNA binding to M2-1. As mutations on both P and M2-1 induced resistance against CPM activity, we suggest that CPM may affect the dynamics of the M2-1-P interaction, thereby affecting the relative mobility of the proteins contained in RSV IBs. Overall, our results reveal that stabilizing viral protein-protein interactions is an attractive new antiviral approach. They pave the way for the rational chemical optimization of new specific anti-RSV molecules.
Collapse
Affiliation(s)
- Cédric Diot
- Institut Pasteur, Université Paris Cité, M3P, F-75015 Paris, France;
- INSERM, UMR 1173 (2I), Université Paris-Saclay-Versailles St. Quentin, M3P, F-78180 Versailles, France;
| | - Charles-Adrien Richard
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Jennifer Risso-Ballester
- INSERM, UMR 1173 (2I), Université Paris-Saclay-Versailles St. Quentin, M3P, F-78180 Versailles, France;
| | - Davy Martin
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Jenna Fix
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Jean-François Eléouët
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France;
| | - Marie-Anne Rameix-Welti
- INSERM, UMR 1173 (2I), Université Paris-Saclay-Versailles St. Quentin, M3P, F-78180 Versailles, France;
- Laboratoire de Microbiologie, Hôpital Ambroise Paré, Assistance Publique des Hôpitaux de Paris, DMU15, F-75015 Paris, France
| | - Marie Galloux
- INRAE, Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St. Quentin, F-78350 Jouy-en-Josas, France; (C.-A.R.); (D.M.); (J.F.); (J.-F.E.)
| |
Collapse
|
9
|
Chen C, Li D, Li J, Chen X, Wei W, Wang X. Microstructure and biomolecules mobility of human milk fat globules by fluorescence recovery after photobleaching with confocal scanning laser microscope. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Liu L, Tian C, Dong B, Xia M, Cai Y, Hu R, Chu X. Models to evaluate the barrier properties of mucus during drug diffusion. Int J Pharm 2021; 599:120415. [PMID: 33647411 DOI: 10.1016/j.ijpharm.2021.120415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Mucus is widely disseminated in the nasal cavity, oral cavity, respiratory tract, eyes, gastrointestinal tract, and reproductive tract to prevent the invasion of pathogenic bacteria and toxins. The mucus layer through its continuous secretion can prevent the passage of macromolecular substances such as pathogenic bacteria and toxins, thereby reducing the occurrence of inflammation. Without a doubt, mucus also hinders oral absorption. The physiological and biochemical properties of intestinal mucus and the different types of mucus barrier models need to be predominated. To find ways to increase the bioavailability of drugs in the future, this article summarizes mucus composition, barrier properties, mucus models, and mucoadhesive/mucopenetrating particles to highlight the information they can afford. Collectively, the review seeks to provide a state-of-the-art roadmap for researchers who must contend with this critical barrier to drug delivery.
Collapse
Affiliation(s)
- Liu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chunling Tian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Baoqi Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengqiu Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Rongfeng Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
11
|
Wei Q, Brzostek J, Sankaran S, Casas J, Hew LSQ, Yap J, Zhao X, Wojciech L, Gascoigne NRJ. Lck bound to coreceptor is less active than free Lck. Proc Natl Acad Sci U S A 2020; 117:15809-15817. [PMID: 32571924 PMCID: PMC7355011 DOI: 10.1073/pnas.1913334117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Src family kinase Lck plays critical roles during T cell development and activation, as it phosphorylates the TCR/CD3 complex to initiate TCR signaling. Lck is present either in coreceptor-bound or coreceptor-unbound (free) forms, and we here present evidence that the two pools of Lck have different molecular properties. We discovered that the free Lck fraction exhibited higher mobility than CD8α-bound Lck in OT-I T hybridoma cells. The free Lck pool showed more activating Y394 phosphorylation than the coreceptor-bound Lck pool. Consistent with this, free Lck also had higher kinase activity, and free Lck mediated higher T cell activation as compared to coreceptor-bound Lck. Furthermore, the coreceptor-Lck coupling was independent of TCR activation. These findings give insights into the initiation of TCR signaling, suggesting that changes in coreceptor-Lck coupling constitute a mechanism for regulation of T cell sensitivity.
Collapse
Affiliation(s)
- Qianru Wei
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Shvetha Sankaran
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456
| | - Javier Casas
- Department of Biochemistry, Molecular Biology and Physiology, Universidad de Valladolid, Valladolid, Spain, 47005
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain, 47003
| | - Lois Shi-Qi Hew
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Jiawei Yap
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Xiang Zhao
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Lukasz Wojciech
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545;
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456
| |
Collapse
|
12
|
Panagopoulos A, Taraviras S, Nishitani H, Lygerou Z. CRL4Cdt2: Coupling Genome Stability to Ubiquitination. Trends Cell Biol 2020; 30:290-302. [DOI: 10.1016/j.tcb.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
|
13
|
Koulouras G, Panagopoulos A, Rapsomaniki MA, Giakoumakis NN, Taraviras S, Lygerou Z. EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data. Nucleic Acids Res 2019; 46:W467-W472. [PMID: 29901776 PMCID: PMC6030846 DOI: 10.1093/nar/gky508] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023] Open
Abstract
Understanding protein dynamics is crucial in order to elucidate protein function and interactions. Advances in modern microscopy facilitate the exploration of the mobility of fluorescently tagged proteins within living cells. Fluorescence recovery after photobleaching (FRAP) is an increasingly popular functional live-cell imaging technique which enables the study of the dynamic properties of proteins at a single-cell level. As an increasing number of labs generate FRAP datasets, there is a need for fast, interactive and user-friendly applications that analyze the resulting data. Here we present easyFRAP-web, a web application that simplifies the qualitative and quantitative analysis of FRAP datasets. EasyFRAP-web permits quick analysis of FRAP datasets through an intuitive web interface with interconnected analysis steps (experimental data assessment, different types of normalization and estimation of curve-derived quantitative parameters). In addition, easyFRAP-web provides dynamic and interactive data visualization and data and figure export for further analysis after every step. We test easyFRAP-web by analyzing FRAP datasets capturing the mobility of the cell cycle regulator Cdt2 in the presence and absence of DNA damage in cultured cells. We show that easyFRAP-web yields results consistent with previous studies and highlights cell-to-cell heterogeneity in the estimated kinetic parameters. EasyFRAP-web is platform-independent and is freely accessible at: https://easyfrap.vmnet.upatras.gr/.
Collapse
Affiliation(s)
- Grigorios Koulouras
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | - Andreas Panagopoulos
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | - Maria A Rapsomaniki
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| |
Collapse
|
14
|
Hayashi A, Giakoumakis NN, Heidebrecht T, Ishii T, Panagopoulos A, Caillat C, Takahara M, Hibbert RG, Suenaga N, Stadnik-Spiewak M, Takahashi T, Shiomi Y, Taraviras S, von Castelmur E, Lygerou Z, Perrakis A, Nishitani H. Direct binding of Cdt2 to PCNA is important for targeting the CRL4 Cdt2 E3 ligase activity to Cdt1. Life Sci Alliance 2018; 1:e201800238. [PMID: 30623174 PMCID: PMC6312923 DOI: 10.26508/lsa.201800238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/18/2023] Open
Abstract
The C-terminal end of Cdt2 contains a PIP box for binding to PCNA to promote CRL4Cdt2 function, creating a new paradigm where the substrate receptor and substrates bind to a common multivalent docking platform for ubiquitination. The CRL4Cdt2 ubiquitin ligase complex is an essential regulator of cell-cycle progression and genome stability, ubiquitinating substrates such as p21, Set8, and Cdt1, via a display of substrate degrons on proliferating cell nuclear antigens (PCNAs). Here, we examine the hierarchy of the ligase and substrate recruitment kinetics onto PCNA at sites of DNA replication. We demonstrate that the C-terminal end of Cdt2 bears a PCNA interaction protein motif (PIP box, Cdt2PIP), which is necessary and sufficient for the binding of Cdt2 to PCNA. Cdt2PIP binds PCNA directly with high affinity, two orders of magnitude tighter than the PIP box of Cdt1. X-ray crystallographic structures of PCNA bound to Cdt2PIP and Cdt1PIP show that the peptides occupy all three binding sites of the trimeric PCNA ring. Mutating Cdt2PIP weakens the interaction with PCNA, rendering CRL4Cdt2 less effective in Cdt1 ubiquitination and leading to defects in Cdt1 degradation. The molecular mechanism we present suggests a new paradigm for bringing substrates to the CRL4-type ligase, where the substrate receptor and substrates bind to a common multivalent docking platform to enable subsequent ubiquitination.
Collapse
Affiliation(s)
- Akiyo Hayashi
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | | | - Tatjana Heidebrecht
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Takashi Ishii
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | | | - Christophe Caillat
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michiyo Takahara
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Richard G Hibbert
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Naohiro Suenaga
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Magda Stadnik-Spiewak
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Yasushi Shiomi
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | | | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Anastassis Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hideo Nishitani
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| |
Collapse
|
15
|
Lippincott-Schwartz J, Snapp EL, Phair RD. The Development and Enhancement of FRAP as a Key Tool for Investigating Protein Dynamics. Biophys J 2018; 115:1146-1155. [PMID: 30219286 DOI: 10.1016/j.bpj.2018.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 01/18/2023] Open
Abstract
The saga of fluorescence recovery after photobleaching (FRAP) illustrates how disparate technical developments impact science. Starting with the classic 1976 Axelrod et al. work in Biophysical Journal, FRAP (originally fluorescence photobleaching recovery) opened the door to extraction of quantitative information from photobleaching experiments, laying the experimental and theoretical groundwork for quantifying both the mobility and the mobile fraction of a labeled population of proteins. Over the ensuing years, FRAP's reach dramatically expanded, with new developments in GFP technology and turn-key confocal microscopy, which enabled measurement of protein diffusion and binding/dissociation rates in virtually every compartment within the cell. The FRAP technique and data catalyzed an exchange of ideas between biophysicists studying membrane dynamics, cell biologists focused on intracellular dynamics, and systems biologists modeling the dynamics of cell activity. The outcome transformed the field of cellular biology, leading to a fundamental rethinking of long-held theories of cellular dynamism. Here, we review the pivotal FRAP studies that made these developments and conceptual changes possible, which gave rise to current models of complex cell dynamics.
Collapse
Affiliation(s)
| | - Erik Lee Snapp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia.
| | - Robert D Phair
- Integrative Bioinformatics, Inc., Mountain View, California
| |
Collapse
|
16
|
Rubio JM, Astudillo AM, Casas J, Balboa MA, Balsinde J. Regulation of Phagocytosis in Macrophages by Membrane Ethanolamine Plasmalogens. Front Immunol 2018; 9:1723. [PMID: 30087680 PMCID: PMC6066501 DOI: 10.3389/fimmu.2018.01723] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Macrophages, as professional phagocytes of the immune system, possess the ability to detect and clear invading pathogens and apoptotic cells through phagocytosis. Phagocytosis involves membrane reorganization and remodeling events on the cell surface, which play an essential role in innate immunity and tissue homeostasis and the control of inflammation. In this work, we report that cells deficient in membrane ethanolamine plasmalogen demonstrate a reduced capacity to phagocytize opsonized zymosan particles. Amelioration of plasmalogen deficiency in these cells by incubation with lysoplasmalogen results in a significant augmentation of the phagocytic capacity of the cells. In parallel with these increases, restoration of plasmalogen levels in the cells also increases the number and size of lipid rafts in the membrane, reduces membrane fluidity down to levels found in cells containing normal plasmalogen levels, and improves receptor-mediated signaling. Collectively, these results suggest that membrane plasmalogen level determines characteristics of the plasma membrane such as fluidity and the formation of microdomains that are necessary for efficient signal transduction leading to optimal phagocytosis by macrophages.
Collapse
Affiliation(s)
- Julio M Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Departamento de Bioquímica y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|