1
|
Zuurveld M, Díaz CB, Redegeld F, Folkerts G, Garssen J, van’t Land B, Willemsen LE. An advanced in vitro human mucosal immune model to predict food sensitizing allergenicity risk: A proof of concept using ovalbumin as model allergen. Front Immunol 2023; 13:1073034. [PMID: 36700233 PMCID: PMC9869142 DOI: 10.3389/fimmu.2022.1073034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background The global demand of sustainable food sources leads to introduction of novel foods on the market, which may pose a risk of inducing allergic sensitization. Currently there are no validated in vitro assays mimicking the human mucosal immune system to study sensitizing allergenicity risk of novel food proteins. The aim of this study was to introduce a series of sequential human epithelial and immune cell cocultures mimicking key immune events after exposure to the common food allergen ovalbumin from intestinal epithelial cell (IEC) activation up to mast cell degranulation. Methods This in vitro human mucosal food sensitizing allergenicity model combines crosstalk between IEC and monocyte-derived dendritic cells (moDC), followed by coculture of the primed moDCs with allogenic naïve CD4+ T cells. During subsequent coculture of primed CD4+ T cells with naïve B cells, IgE isotype-switching was monitored and supernatants were added to primary human mast cells to investigate degranulation upon IgE crosslinking. Mediator secretion and surface marker expression of immune cells were determined. Results Ovalbumin activates IEC and underlying moDCs, both resulting in downstream IgE isotype-switching. However, only direct exposure of moDCs to ovalbumin drives Th2 polarization and a humoral B cell response allowing for IgE mediated mast cell degranulation, IL13 and IL4 release in this sequential DC-T cell-B cell-mast cell model, indicating also an immunomodulatory role for IEC. Conclusion This in vitro coculture model combines multiple key events involved in allergic sensitization from epithelial cell to mast cell, which can be applied to study the allergic mechanism and sensitizing capacity of proteins.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands,*Correspondence: Marit Zuurveld, ; Linette E.M. Willemsen,
| | - Cristina Bueno Díaz
- Chemical Biology and Drug Discovery Group, Department of Pharmacological Sciences, Utrecht University, Utrecht, Netherlands
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands,Immunology Platform, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Belinda van’t Land
- Immunology Platform, Danone Nutricia Research B.V., Utrecht, Netherlands,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linette E.M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands,*Correspondence: Marit Zuurveld, ; Linette E.M. Willemsen,
| |
Collapse
|
2
|
Franke K, Wang Z, Zuberbier T, Babina M. Cytokines Stimulated by IL-33 in Human Skin Mast Cells: Involvement of NF-κB and p38 at Distinct Levels and Potent Co-Operation with FcεRI and MRGPRX2. Int J Mol Sci 2021; 22:ijms22073580. [PMID: 33808264 PMCID: PMC8036466 DOI: 10.3390/ijms22073580] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
The IL-1 family cytokine IL-33 activates and re-shapes mast cells (MCs), but whether and by what mechanisms it elicits cytokines in MCs from human skin remains poorly understood. The current study found that IL-33 activates CCL1, CCL2, IL-5, IL-8, IL-13, and TNF-α, while IL-1β, IL-6, IL-31, and VEGFA remain unaffected in cutaneous MCs, highlighting that each MC subset responds to IL-33 with a unique cytokine profile. Mechanistically, IL-33 induced the rapid (1–2 min) and durable (2 h) phosphorylation of p38, whereas the phosphorylation of JNK was weaker and more transient. Moreover, the NF-κB pathway was potently activated, as revealed by IκB degradation, increased nuclear abundance of p50/p65, and vigorous phosphorylation of p65. The activation of NF-κB occurred independently of p38 or JNK. The induced transcription of the cytokines selected for further study (CCL1, CCL2, IL-8, TNF-α) was abolished by interference with NF-κB, while p38/JNK had only some cytokine-selective effects. Surprisingly, at the level of the secreted protein products, p38 was nearly as effective as NF-κB for all entities, suggesting post-transcriptional involvement. IL-33 did not only instruct skin MCs to produce selected cytokines, but it also efficiently co-operated with the allergic and pseudo-allergic/neurogenic activation networks in the production of IL-8, TNF-α, CCL1, and CCL2. Synergism was more pronounced at the protein than at the mRNA level and appeared stronger for MRGPRX2 ligands than for FcεRI. Our results underscore the pro-inflammatory nature of an acute IL-33 stimulus and imply that especially in combination with allergens or MRGPRX2 agonists, IL-33 will efficiently amplify skin inflammation and thereby aggravate inflammatory dermatoses.
Collapse
Affiliation(s)
- Kristin Franke
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
| | - Zhao Wang
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
- Department of Dermatology, The Second Affiliated Hospital, Northwest Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Torsten Zuberbier
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
| | - Magda Babina
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
- Correspondence: ; Tel.: +49-175-1649-539; Fax: +49-30-45051-8900
| |
Collapse
|
3
|
Zuurveld M, van Witzenburg NP, Garssen J, Folkerts G, Stahl B, van't Land B, Willemsen LEM. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Front Immunol 2020; 11:801. [PMID: 32457747 PMCID: PMC7221186 DOI: 10.3389/fimmu.2020.00801] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence and incidence of allergic diseases is rising and these diseases have become the most common chronic diseases during childhood in Westernized countries. Early life forms a critical window predisposing for health or disease. Therefore, this can also be a window of opportunity for allergy prevention. Postnatally the gut needs to mature, and the microbiome is built which further drives the training of infant's immune system. Immunomodulatory components in breastmilk protect the infant in this crucial period by; providing nutrients that contain substrates for the microbiome, supporting intestinal barrier function, protecting against pathogenic infections, enhancing immune development and facilitating immune tolerance. The presence of a diverse human milk oligosaccharide (HMOS) mixture, containing several types of functional groups, points to engagement in several mechanisms related to immune and microbiome maturation in the infant's gastrointestinal tract. In recent years, several pathways impacted by HMOS have been elucidated, including their capacity to; fortify the microbiome composition, enhance production of short chain fatty acids, bind directly to pathogens and interact directly with the intestinal epithelium and immune cells. The exact mechanisms underlying the immune protective effects have not been fully elucidated yet. We hypothesize that HMOS may be involved in and can be utilized to provide protection from developing allergic diseases at a young age. In this review, we highlight several pathways involved in the immunomodulatory effects of HMOS and the potential role in prevention of allergic diseases. Recent studies have proposed possible mechanisms through which HMOS may contribute, either directly or indirectly, via microbiome modification, to induce oral tolerance. Future research should focus on the identification of specific pathways by which individual HMOS structures exert protective actions and thereby contribute to the capacity of the authentic HMOS mixture in early life allergy prevention.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Nikita P. van Witzenburg
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Bernd Stahl
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Global Centre of Excellence Human Milk Research and Analytical Sciences, Danone Nutricia Research B.V., Utrecht, Netherlands
- Division of Chemical Biology and Drug Discovery, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Belinda van't Land
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
New roles and controls of mast cells. Curr Opin Immunol 2018; 50:39-47. [DOI: 10.1016/j.coi.2017.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/14/2022]
|
5
|
Dudeck J, Medyukhina A, Fröbel J, Svensson CM, Kotrba J, Gerlach M, Gradtke AC, Schröder B, Speier S, Figge MT, Dudeck A. Mast cells acquire MHCII from dendritic cells during skin inflammation. J Exp Med 2017; 214:3791-3811. [PMID: 29084819 PMCID: PMC5716026 DOI: 10.1084/jem.20160783] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Dudeck et al. demonstrate that inflammatory conditions induce dynamic interactions between mast cells (MCs) and dendritic cells (DCs) culminating in protein exchange. Resident MCs are equipped with DC MHCII and empowered to initiate T cell–driven inflammation during migration-based DC absence. Mast cells (MCs) and dendritic cells (DCs) are essential innate sentinels populating host-environment interfaces. Using longitudinal intravital multiphoton microscopy of DCGFP/MCRFP reporter mice, we herein provide in vivo evidence that migratory DCs execute targeted cell-to-cell interactions with stationary MCs before leaving the inflamed skin to draining lymph nodes. During initial stages of skin inflammation, DCs dynamically scan MCs, whereas at a later stage, long-lasting interactions predominate. These innate-to-innate synapse-like contacts ultimately culminate in DC-to-MC molecule transfers including major histocompatibility complex class II (MHCII) proteins enabling subsequent ex vivo priming of allogeneic T cells with a specific cytokine signature. The extent of MHCII transfer to MCs correlates with their T cell priming efficiency. Importantly, preventing the cross talk by preceding DC depletion decreases MC antigen presenting capacity and T cell–driven inflammation. Consequently, we identify an innate intercellular communication arming resident MCs with key DC functions that might contribute to the acute defense potential during critical periods of migration-based DC absence.
Collapse
Affiliation(s)
- Jan Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute for Immunology, Medical Faculty Carl-Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Medyukhina
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Julia Fröbel
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Gerlach
- DFG-Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of the Technische Universität Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Centre for Diabetes Research, Dresden, Germany
| | | | - Bernd Schröder
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stephan Speier
- DFG-Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of the Technische Universität Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Centre for Diabetes Research, Dresden, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany .,Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany .,Institute for Immunology, Medical Faculty Carl-Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|