1
|
Cillo F, Coppola E, Habetswallner F, Cecere F, Pignata L, Toriello E, De Rosa A, Grilli L, Ammendola A, Salerno P, Romano R, Cirillo E, Merla G, Riccio A, Pignata C, Giardino G. Understanding the Variability of 22q11.2 Deletion Syndrome: The Role of Epigenetic Factors. Genes (Basel) 2024; 15:321. [PMID: 38540380 PMCID: PMC10969806 DOI: 10.3390/genes15030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 06/14/2024] Open
Abstract
Initially described as a triad of immunodeficiency, congenital heart defects and hypoparathyroidism, 22q11.2 deletion syndrome (22q11.2DS) now encompasses a great amount of abnormalities involving different systems. Approximately 85% of patients share a 3 Mb 22q11.2 region of hemizygous deletion in which 46 protein-coding genes are included. However, the hemizygosity of the genes of this region cannot fully explain the clinical phenotype and the phenotypic variability observed among patients. Additional mutations in genes located outside the deleted region, leading to "dual diagnosis", have been described in 1% of patients. In some cases, the hemizygosity of the 22q11.2 region unmasks autosomal recessive conditions due to additional mutations on the non-deleted allele. Some of the deleted genes play a crucial role in gene expression regulation pathways, involving the whole genome. Typical miRNA expression patterns have been identified in 22q11.2DS, due to an alteration in miRNA biogenesis, affecting the expression of several target genes. Also, a methylation epi-signature in CpG islands differentiating patients from controls has been defined. Herein, we summarize the evidence on the genetic and epigenetic mechanisms implicated in the pathogenesis of the clinical manifestations of 22q11.2 DS. The review of the literature confirms the hypothesis that the 22q11.2DS phenotype results from a network of interactions between deleted protein-coding genes and altered epigenetic regulation.
Collapse
Affiliation(s)
- Francesca Cillo
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Emma Coppola
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Federico Habetswallner
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (F.C.); (L.P.); (A.R.)
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (F.C.); (L.P.); (A.R.)
| | - Elisabetta Toriello
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Laura Grilli
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Antonio Ammendola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (A.A.); (P.S.); (G.M.)
| | - Paolo Salerno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (A.A.); (P.S.); (G.M.)
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (A.A.); (P.S.); (G.M.)
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (F.C.); (L.P.); (A.R.)
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, 80138 Naples, Italy; (F.C.); (E.C.); (F.H.); (E.T.); (A.D.R.); (L.G.); (R.R.); (E.C.); (G.G.)
| |
Collapse
|
2
|
Delcher HA, DeMeis JD, Ghobar N, Godang NL, Knight SL, Alqudah SY, Nguyen KN, Watters BC, Borchert GM. SARS-Cov-2 small viral RNA suppresses gene expression via complementary binding to mRNA 3' UTR. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000790. [PMID: 38312351 PMCID: PMC10835431 DOI: 10.17912/micropub.biology.000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
SARS-CoV-2 (SC2) has been intensely studied since its emergence. However, the mechanisms of host immune dysregulation triggered by SC2 remain poorly understood. That said, it is well established that many prominent viral families encode microRNAs (miRNAs) or related small viral RNAs (svRNAs) capable of regulating human genes involved in immune function. Importantly, recent reports have shown that SC2 encodes its own svRNAs. In this study, we have identified 12 svRNAs expressed during SC2 infection and show that one of these svRNAs can regulate target gene expression via complementary binding to mRNA 3' untranslated regions (3'UTRs) much like human microRNAs.
Collapse
Affiliation(s)
- Haley A Delcher
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Jeffrey D DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Nicole Ghobar
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Noel L Godang
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Sierra L Knight
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Shahem Y Alqudah
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Kevin N Nguyen
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Brianna C Watters
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Glen M Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
- Department of Biology, College of Arts and Sciences, University of South Alabama, Mobile, AL
| |
Collapse
|
3
|
Naaz S, Sakib N, Houserova D, Badve R, Crucello A, Borchert GM. Characterization of a novel sRNA contributing to biofilm formation in Salmonella enterica serovar Typhimurium. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000796. [PMID: 37151214 PMCID: PMC10160853 DOI: 10.17912/micropub.biology.000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/20/2023] [Accepted: 01/01/1970] [Indexed: 05/09/2023]
Abstract
Small RNAs (sRNAs) are short noncoding RNAs of ~50-200 nucleotides believed to primarily function in regulating crucial activities in bacteria during periods of cellular stress. This study examined the relevance of specific sRNAs on biofilm formation in nutrient starved Salmonella enterica serovar Typhimurium. Eight unique sRNAs were selected for deletion primarily based on their genomic location and/or putative targets. Quantitative and qualitative analyses confirm one of these, sRNA1186573, is required for efficient biofilm formation in S. enterica further highlighting the significance of sRNAs during Salmonella stress response.
Collapse
Affiliation(s)
- Sayema Naaz
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Najmuj Sakib
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Dominika Houserova
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Rani Badve
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Aline Crucello
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Glen M Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
- Correspondence to: Glen M Borchert (
)
| |
Collapse
|
4
|
Shimomura H, Okada R, Tanaka T, Hozaka Y, Wada M, Moriya S, Idichi T, Kita Y, Kurahara H, Ohtsuka T, Seki N. Role of miR-30a-3p Regulation of Oncogenic Targets in Pancreatic Ductal Adenocarcinoma Pathogenesis. Int J Mol Sci 2020; 21:E6459. [PMID: 32899691 PMCID: PMC7555373 DOI: 10.3390/ijms21186459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Our recent studies have implicated some passenger strands of miRNAs in the molecular pathogenesis of human cancers. Analysis of the microRNA (miRNA) expression signature in pancreatic ductal adenocarcinoma (PDAC) has shown that levels of miR-30a-3p, the passenger strand derived from pre-mir-30a, are significantly downregulated in PDAC tissues. This study aimed to identify the oncogenes closely involved in PDAC molecular pathogenesis under the regulation of miR-30a-3p. Ectopic expression assays showed that miR-30a-3p expression inhibited the aggressiveness of the PDAC cells, suggesting that miR-30a-3p acts as a tumor-suppressive miRNA in PDAC cells. We further identified 102 putative targets of miR-30a-3p regulation in PDAC cells by combining in silico analysis with gene expression data. Of these, ten genes (EPS8, HMGA2, ENDOD1, SLC39A10, TGM2, MGLL, SERPINE1, ITGA2, DTL, and UACA) were independent prognostic factors in multivariate analysis of survival of patients with PDAC (p < 0.01). We also investigated the oncogenic function of the integrin ITGA2 in PDAC cell lines. The integrin family comprises cell adhesion molecules expressed as heterodimeric, transmembrane proteins on the surface of various cells. Overexpression of ITGA2/ITGB1 (an ITGA2 binding partner) was detected in the PDAC clinical specimens. The knockdown of ITGA2 expression attenuated the malignant phenotypes of the PDAC cells. Together, results from these microRNA-based approaches can accelerate our understanding of PDAC molecular pathogenesis.
Collapse
Affiliation(s)
- Hiroki Shimomura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| |
Collapse
|
5
|
Tang J, Wang D, Lu J, Zhou X. MiR-125b participates in the occurrence of preeclampsia by regulating the migration and invasion of extravillous trophoblastic cells through STAT3 signaling pathway. J Recept Signal Transduct Res 2020; 41:202-208. [PMID: 32787544 DOI: 10.1080/10799893.2020.1806318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preeclampsia (PE) is a major risk factor for maternal and fetal mortality. Studies showed that microRNAs (miRNAs) play important roles in PE, and are closely related to extra-villous trophoblastic proliferation and invasion. The current study determined miR-125b expression in PE patients, and explored the role of miR-125b in the occurrence and development of PE and its possible mechanism, aiming to provide a novel basis for the diagnosis and treatment of PE. The level of miR-125b in serum derived from pregnant women was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, invasion and migration of HTR-8/SVneo were determined by Cell Counting Kit-8 (CCK-8), Transwell and scratch assay, respectively. The target gene of miR-125b was predicted by Targetscan, and verified by luciferase reporter assay. The expressions of related proteins were determined by Western Blotting. The miR-125b level in the serum of PE patients was up-regulated as compared with normal pregnant women, and high level of miR-125b reduced cell proliferation, inhibited invasion and migration of HTR-8/SVneo as well as the expressions of STAT3, p-STAT3 and SOCS3, while low level of miR-125b produced the opposite results. STAT3 was predicted as the target gene of miR-125b, and the high level of miR-125b inhibited STAT3 signaling pathway. High expression of miR-125b may be involved in the occurrence of PE through inhibiting STAT3 pathway to inhibit the migration and invasion of extra-villous trophoblastic cells.
Collapse
Affiliation(s)
- Jiani Tang
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Dan Wang
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Jing Lu
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Xiaoyu Zhou
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| |
Collapse
|