1
|
Zhao Z, Ozcan EE, VanArsdale E, Li J, Kim E, Sandler AD, Kelly DL, Bentley WE, Payne GF. Mediated Electrochemical Probing: A Systems-Level Tool for Redox Biology. ACS Chem Biol 2021; 16:1099-1110. [PMID: 34156828 DOI: 10.1021/acschembio.1c00267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biology uses well-known redox mechanisms for energy harvesting (e.g., respiration), biosynthesis, and immune defense (e.g., oxidative burst), and now we know biology uses redox for systems-level communication. Currently, we have limited abilities to "eavesdrop" on this redox modality, which can be contrasted with our abilities to observe and actuate biology through its more familiar ionic electrical modality. In this Perspective, we argue that the coupling of electrochemistry with diffusible mediators (electron shuttles) provides a unique opportunity to access the redox communication modality through its electrical features. We highlight previous studies showing that mediated electrochemical probing (MEP) can "communicate" with biology to acquire information and even to actuate specific biological responses (i.e., targeted gene expression). We suggest that MEP may reveal an extent of redox-based communication that has remained underappreciated in nature and that MEP could provide new technological approaches for redox biology, bioelectronics, clinical care, and environmental sciences.
Collapse
Affiliation(s)
- Zhiling Zhao
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
| | - Evrim E. Ozcan
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Eric VanArsdale
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
| | - Anthony D. Sandler
- Department of General and Thoracic Surgery, Children’s National Hospital, Washington, D.C. 20010, United States
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, United States
| | - William E. Bentley
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Biomedical Device Institute, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Tzounakas VL, Anastasiadi AT, Stefanoni D, Cendali F, Bertolone L, Gamboni F, Dzieciatkowska M, Rousakis P, Vergaki A, Soulakis V, Tsitsilonis OE, Stamoulis K, Papassideri IS, Kriebardis ANG, D'Alessandro A, Antonelou MH. β-thalassemia minor is a beneficial determinant of red blood cell storage lesion. Haematologica 2021; 107:112-125. [PMID: 33730845 PMCID: PMC8719105 DOI: 10.3324/haematol.2020.273946] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/01/2022] Open
Abstract
Blood donor genetics and lifestyle affect the quality of red blood cell (RBC) storage. Heterozygotes for beta thalassemia (bThal+) constitute a non-negligible proportion of blood donors in the Mediterranean and other geographical areas. The unique hematological profile of bThal+ could affect the capacity of enduring storage stress, however, the storability of bThal+ RBC is largely unknown. In this study, RBC from 18 bThal+ donors were stored in the cold and profiled for primary (hemolysis) and secondary (phosphatidylserine exposure, potassium leakage, oxidative stress) quality measures, and metabolomics, versus sex- and age-matched controls. The bThal+ units exhibited better levels of storage hemolysis and susceptibility to lysis following osmotic, oxidative and mechanical insults. Moreover, bThal+ RBC had a lower percentage of surface removal signaling, reactive oxygen species and oxidative defects to membrane components at late stages of storage. Lower potassium accumulation and higher uratedependent antioxidant capacity were noted in the bThal+ supernatant. Full metabolomics analyses revealed alterations in purine and arginine pathways at baseline, along with activation of the pentose phosphate pathway and glycolysis upstream to pyruvate kinase in bThal+ RBC. Upon storage, substantial changes were observed in arginine, purine and vitamin B6 metabolism, as well as in the hexosamine pathway. A high degree of glutamate generation in bThal+ RBC was accompanied by low levels of purine oxidation products (IMP, hypoxanthine, allantoin). The bThal mutations impact the metabolism and the susceptibility to hemolysis of stored RBC, suggesting good post-transfusion recovery. However, hemoglobin increment and other clinical outcomes of bThal+ RBC transfusion deserve elucidation by future studies.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens
| | - Alkmini T Anastasiadi
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Pantelis Rousakis
- Department of Biology, Section of Animal and Human Physiology, School of Science, NKUA, Athens
| | - Athina Vergaki
- Regional Blood Transfusion Center, "Agios Panteleimon" General Hospital of Nikea, Piraeus
| | - Vassilis Soulakis
- Regional Blood Transfusion Center, "Agios Panteleimon" General Hospital of Nikea, Piraeus
| | - Ourania E Tsitsilonis
- Department of Biology, Section of Animal and Human Physiology, School of Science, NKUA, Athens
| | | | - Issidora S Papassideri
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens
| | - A Nastasios G Kriebardis
- Department of Biomedical Science, School of Health and Caring Science, University of West Attica (UniWA), Egaleo
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO.
| | - Marianna H Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens.
| |
Collapse
|
3
|
Morrison EJ, Champagne DP, Dzieciatkowska M, Nemkov T, Zimring JC, Hansen KC, Guan F, Huffman DM, Santambrogio L, D'Alessandro A. Parabiosis Incompletely Reverses Aging-Induced Metabolic Changes and Oxidant Stress in Mouse Red Blood Cells. Nutrients 2019; 11:nu11061337. [PMID: 31207887 PMCID: PMC6627295 DOI: 10.3390/nu11061337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022] Open
Abstract
Mature red blood cells (RBCs) not only account for ~83% of the total host cells in the human body, but they are also exposed to all body tissues during their circulation in the bloodstream. In addition, RBCs are devoid of de novo protein synthesis capacity and, as such, they represent a perfect model to investigate system-wide alterations of cellular metabolism in the context of aging and age-related oxidant stress without the confounding factor of gene expression. In the present study, we employed ultra-high-pressure liquid chromatography coupled with mass spectrometry (UHPLC–MS)-based metabolomics and proteomics to investigate RBC metabolism across age in male mice (6, 15, and 25 months old). We report that RBCs from aging mice face a progressive decline in the capacity to cope with oxidant stress through the glutathione/NADPH-dependent antioxidant systems. Oxidant stress to tryptophan and purines was accompanied by declines in late glycolysis and methyl-group donors, a potential compensatory mechanism to repair oxidatively damaged proteins. Moreover, heterochronic parabiosis experiments demonstrated that the young environment only partially rescued the alterations in one-carbon metabolism in old mice, although it had minimal to no impact on glutathione homeostasis, the pentose phosphate pathway, and oxidation of purines and tryptophan, which were instead aggravated in old heterochronic parabionts.
Collapse
Affiliation(s)
- Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Devin P Champagne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | | | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Fangxia Guan
- Departments of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Derek M Huffman
- Departments of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Laura Santambrogio
- Department of Pathology, Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
- Department of Medicine-Division of Hematology, University of Colorado Denver-Anschutz Medical Campus, 12469 East 17th Ave RC2, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Paukovich N, Xue M, Elder JR, Redzic JS, Blue A, Pike H, Miller BG, Pitts TM, Pollock DD, Hansen K, D'Alessandro A, Eisenmesser EZ. Biliverdin Reductase B Dynamics Are Coupled to Coenzyme Binding. J Mol Biol 2018; 430:3234-3250. [PMID: 29932944 DOI: 10.1016/j.jmb.2018.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Biliverdin reductase B (BLVRB) is a newly identified cellular redox regulator that catalyzes the NADPH-dependent reduction of multiple substrates. Through mass spectrometry analysis, we identified high levels of BLVRB in mature red blood cells, highlighting the importance of BLVRB in redox regulation. The BLVRB conformational changes that occur during conezyme/substrate binding and the role of dynamics in BLVRB function, however, remain unknown. Through a combination of NMR, kinetics, and isothermal titration calorimetry studies, we determined that BLVRB binds its coenzyme 500-fold more tightly than its substrate. While the active site of apo BLVRB is highly dynamic on multiple timescales, active site dynamics are largely quenched within holo BLVRB, in which dynamics are redistributed to other regions of the enzyme. We show that a single point mutation of Arg78➔Ala leads to both an increase in active site micro-millisecond motions and an increase in the microscopic rate constants of coenzyme binding. This demonstrates that altering BLVRB active site dynamics can directly cause a change in functional characteristics. Our studies thus address the solution behavior of apo and holo BLVRB and identify a role of enzyme dynamics in coenzyme binding.
Collapse
Affiliation(s)
- Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Mengjun Xue
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - James R Elder
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Ashley Blue
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Hamish Pike
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Brian G Miller
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32310, USA
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, Aurora, CO 80045, USA
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|