1
|
Dávila-Velderrain J, Caldú-Primo JL, Martínez-García JC, Álvarez-Buylla Roces ME. Gene Regulatory Network Dynamical Logical Models for Plant Development. Methods Mol Biol 2022; 2395:59-77. [PMID: 34822149 DOI: 10.1007/978-1-0716-1816-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mathematical and computational approaches that integrate and model the concerted action of multiple genetic and nongenetic components holding highly nonlinear interactions are fundamental for the study of developmental processes. Among these, gene regulatory network (GRN) dynamical models are very useful to understand how diverse types of regulatory constraints restrict the multigene expression patterns that characterize different cell fates. In this chapter we present a hands-on approach to model GRN dynamics, taking as a working example a well-curated and experimentally grounded GRN developmental module proposed by our group: the flower organ specification gene regulatory network (FOS-GRN). We demonstrate how to build and analyze a GRN model according to the following steps: (1) integration of molecular genetic data and formulation of logical rules specifying the dynamic behavior of each gene; (2) determination of steady states (attractors) corresponding to each cell type; (3) validation of the GRN model; and (4) extension of the deterministic model with the inclusion of stochasticity in order to model cell-state transitions dependent on noise due to fluctuations of the involved gen products. The methodologies explained here in detail can be applied to any other developmental module.
Collapse
Affiliation(s)
- José Dávila-Velderrain
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - José Luis Caldú-Primo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán, México
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| | | | - María Elena Álvarez-Buylla Roces
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Coyoacán, México.
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México.
| |
Collapse
|
2
|
Karanam A, Rappel WJ. Boolean modelling in plant biology. QUANTITATIVE PLANT BIOLOGY 2022; 3:e29. [PMID: 37077966 PMCID: PMC10095905 DOI: 10.1017/qpb.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 05/03/2023]
Abstract
Signalling and genetic networks underlie most biological processes and are often complex, containing many highly connected components. Modelling these networks can provide insight into mechanisms but is challenging given that rate parameters are often not well defined. Boolean modelling, in which components can only take on a binary value with connections encoded by logic equations, is able to circumvent some of these challenges, and has emerged as a viable tool to probe these complex networks. In this review, we will give an overview of Boolean modelling, with a specific emphasis on its use in plant biology. We review how Boolean modelling can be used to describe biological networks and then discuss examples of its applications in plant genetics and plant signalling.
Collapse
Affiliation(s)
- Aravind Karanam
- Department of Physics, University of California, San Diego, La Jolla, California92093, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California92093, USA
- Author for correspondence: W.-J. Rappel, E-mail:
| |
Collapse
|
3
|
Ha S, Dimitrova E, Hoops S, Altarawy D, Ansariola M, Deb D, Glazebrook J, Hillmer R, Shahin H, Katagiri F, McDowell J, Megraw M, Setubal J, Tyler BM, Laubenbacher R. PlantSimLab - a modeling and simulation web tool for plant biologists. BMC Bioinformatics 2019; 20:508. [PMID: 31638901 PMCID: PMC6805577 DOI: 10.1186/s12859-019-3094-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND At the molecular level, nonlinear networks of heterogeneous molecules control many biological processes, so that systems biology provides a valuable approach in this field, building on the integration of experimental biology with mathematical modeling. One of the biggest challenges to making this integration a reality is that many life scientists do not possess the mathematical expertise needed to build and manipulate mathematical models well enough to use them as tools for hypothesis generation. Available modeling software packages often assume some modeling expertise. There is a need for software tools that are easy to use and intuitive for experimentalists. RESULTS This paper introduces PlantSimLab, a web-based application developed to allow plant biologists to construct dynamic mathematical models of molecular networks, interrogate them in a manner similar to what is done in the laboratory, and use them as a tool for biological hypothesis generation. It is designed to be used by experimentalists, without direct assistance from mathematical modelers. CONCLUSIONS Mathematical modeling techniques are a useful tool for analyzing complex biological systems, and there is a need for accessible, efficient analysis tools within the biological community. PlantSimLab enables users to build, validate, and use intuitive qualitative dynamic computer models, with a graphical user interface that does not require mathematical modeling expertise. It makes analysis of complex models accessible to a larger community, as it is platform-independent and does not require extensive mathematical expertise.
Collapse
Affiliation(s)
- S Ha
- Department of Computer and Information Sciences, Virginia Military Institute, Lexington, VA, USA
| | - E Dimitrova
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA
| | - S Hoops
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, USA
| | | | | | - D Deb
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY, USA
| | - J Glazebrook
- College of Biological Sciences, University of Minnesota, St. Paul, MN, USA
| | - R Hillmer
- Mendel Biological Solutions, San Franciso, CA, USA
| | - H Shahin
- Virginia Tech, Blacksburg, VA, USA
| | - F Katagiri
- College of Biological Sciences, University of Minnesota, St. Paul, MN, USA
| | - J McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - M Megraw
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - J Setubal
- Biochemistry Department, University of Sao Paolo, Sao Paolo, Brazil.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - B M Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - R Laubenbacher
- Center for Quantitative Medicine, School of Medicine, University of Connecticut, Hartford, USA.
| |
Collapse
|
4
|
Abstract
Being concerned by the understanding of the mechanism underlying chronic degenerative diseases , we presented in the previous chapter the medical systems biology conceptual framework that we present for that purpose in this volume. More specifically, we argued there the clear advantages offered by a state-space perspective when applied to the systems-level description of the biomolecular machinery that regulates complex degenerative diseases. We also discussed the importance of the dynamical interplay between the risk factors and the network of interdependencies that characterizes the biochemical, cellular, and tissue-level biomolecular reactions that underlie the physiological processes in health and disease. As we pointed out in the previous chapter, the understanding of this interplay (articulated around cellular phenotypic plasticity properties, regulated by specific kinds of gene regulatory networks) is necessary if prevention is chosen as the human-health improvement strategy (potentially involving the modulation of the patient's lifestyle). In this chapter we provide the medical systems biology mathematical and computational modeling tools required for this task.
Collapse
|
5
|
Martinez-Sanchez ME, Huerta L, Alvarez-Buylla ER, Villarreal Luján C. Role of Cytokine Combinations on CD4+ T Cell Differentiation, Partial Polarization, and Plasticity: Continuous Network Modeling Approach. Front Physiol 2018; 9:877. [PMID: 30127748 PMCID: PMC6089340 DOI: 10.3389/fphys.2018.00877] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose: We put forward a theoretical and dynamical approach for the semi-quantitative analysis of CD4+ T cell differentiation, the process by which cells with different functions are derived from activated CD4+ T naïve lymphocytes in the presence of particular cytokine microenvironments. We explore the system-level mechanisms that underlie CD4+ T plasticity-the conversion of polarized cells to phenotypes different from those originally induced. Methods: In this paper, we extend a previous study based on a Boolean network to a continuous framework. The network includes transcription factors, signaling pathways, as well as autocrine and exogenous cytokines, with interaction rules derived using fuzzy logic. Results: This approach allows us to assess the effect of relative differences in the concentrations and combinations of exogenous and endogenous cytokines, as well as of the expression levels of diverse transcription factors. We found either abrupt or gradual differentiation patterns between observed phenotypes depending on critical concentrations of single or multiple environmental cytokines. Plastic changes induced by environmental cytokines were observed in conditions of partial phenotype polarization in the T helper 1 to T helper 2 transition. On the other hand, the T helper 17 to induced regulatory T-cells transition was highly dependent on cytokine concentrations, with TGFβ playing a prime role. Conclusion: The present approach is useful to further understand the system-level mechanisms underlying observed patterns of CD4+ T differentiation and response to changing immunological challenges.
Collapse
Affiliation(s)
- Mariana E. Martinez-Sanchez
- Laboratorio Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonor Huerta
- Laboratorio B108, Departmento de Immunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elena R. Alvarez-Buylla
- Laboratorio Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Villarreal Luján
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Física Cuántica y Fotónica, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|