1
|
McCutcheon G, Chaudhary S, Hong S, Park D, Kim J, Green AA. Design of Ribocomputing Devices for Complex Cellular Logic. Methods Mol Biol 2022; 2518:65-86. [PMID: 35666439 DOI: 10.1007/978-1-0716-2421-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to control cell function is a critical goal for synthetic biology and motivates the development of ever-improving methods for precise regulation of gene expression. RNA-based systems represent powerful tools for this purpose since they can take full advantage of the predictable and programmable base pairing properties of RNA to control gene expression. This chapter is focused on the computational design of RNA-only biological circuits that can execute complex Boolean logic expressions in living cells. These ribocomputing devices use toehold switches as building blocks for circuit construction, integrating sensing, computation, and signal generation functions within a gate RNA transcript that regulates expression of a gene of interest. The gate RNA in turn assesses the assembly state of networks of interacting input RNAs to execute AND, OR, and NOT operations with high dynamic range in E. coli. Harnessing in silico tools for device design facilitates scaling of the circuits to complex logic expressions, including four-input AND, six-input OR, and disjunctive normal form expressions with up to 12 inputs. This molecular architecture provides an intuitive and modular strategy for devising logic systems that can be readily engineered using RNA sequence design software and applied in vivo and in vitro. In this chapter, we describe the process for designing ribocomputing devices from the generation of orthogonal toehold switch libraries through to their use as building blocks for AND, OR, and NOT circuitry.
Collapse
Affiliation(s)
- Griffin McCutcheon
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, and the School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Soma Chaudhary
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, and the School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Seongho Hong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Dongwon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea.
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, and the School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
2
|
Sun Q, Cao M, Zhang X, Wang M, Ma Y, Wang J. A simple and low-cost paper-based colorimetric method for detecting and distinguishing the GII.4 and GII.17 genotypes of norovirus. Talanta 2021; 225:121978. [PMID: 33592726 DOI: 10.1016/j.talanta.2020.121978] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
In modern times, viruses still threaten people's lives. Among them, norovirus was the main pathogenic factor in the cause of gastroenteritis and foodborne illness, of which the GII.4 and GII.17 genotypes are prevalent in China and most parts of the world. A simple and low-cost platform for rapid and accurate norovirus detection remains a major challenge. After the cell-free system and paper-based chromogenic system were optimized, a rapid and specific norovirus detection method was established based on norovirus-specific sequences in combination with toehold switch elements. The development of a visible color change during detection eliminates the need for any complicated instruments. We validated this strategy and its specificity in differentiating GII.4, GII.17, Zika virus, and human coronavirus HKU1. The results showed that the optimized detection system not only provided a simple and rapid detection method for the sufficient differentiation of the two norovirus genotypes but also showed high specificity and no cross-reactivity with other viruses. Using nucleic acid isothermal amplification, this assay showed a limit of detection of 0.5 pM for the GII.4 genotype and 2.6 fM for the GII.17 genotype in reactions that could be observed directly with the naked eye. Our results suggested that this paper-based colorimetric method could serve as a simple and low-cost visual detection method for pathogens in clinical samples, especially in remote or rural areas.
Collapse
Affiliation(s)
- Qiuli Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Mengcen Cao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Meng Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Hong F, Ma D, Wu K, Mina LA, Luiten RC, Liu Y, Yan H, Green AA. Precise and Programmable Detection of Mutations Using Ultraspecific Riboregulators. Cell 2020; 180:1018-1032.e16. [PMID: 32109416 PMCID: PMC7063572 DOI: 10.1016/j.cell.2020.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/01/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
The ability to identify single-nucleotide mutations is critical for probing cell biology and for precise detection of disease. However, the small differences in hybridization energy provided by single-base changes makes identification of these mutations challenging in living cells and complex reaction environments. Here, we report a class of de novo-designed prokaryotic riboregulators that provide ultraspecific RNA detection capabilities in vivo and in cell-free transcription-translation reactions. These single-nucleotide-specific programmable riboregulators (SNIPRs) provide over 100-fold differences in gene expression in response to target RNAs differing by a single nucleotide in E. coli and resolve single epitranscriptomic marks in vitro. By exploiting the programmable SNIPR design, we implement an automated design algorithm to develop riboregulators for a range of mutations associated with cancer, drug resistance, and genetic disorders. Integrating SNIPRs with portable paper-based cell-free reactions enables convenient isothermal detection of cancer-associated mutations from clinical samples and identification of Zika strains through unambiguous colorimetric reactions.
Collapse
Affiliation(s)
- Fan Hong
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Duo Ma
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kaiyue Wu
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Lida A Mina
- Hematology-Oncology Department, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, USA
| | - Rebecca C Luiten
- Genetics Department, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, USA
| | - Yan Liu
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
4
|
Ma D, Shen L, Wu K, Diehnelt CW, Green AA. Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synth Biol (Oxf) 2018; 3:ysy018. [PMID: 30370338 PMCID: PMC6195790 DOI: 10.1093/synbio/ysy018] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/18/2018] [Accepted: 09/14/2018] [Indexed: 11/14/2022] Open
Abstract
Noroviruses are a primary cause of gastroenteritis and foodborne illness with cases that affect millions of people worldwide each year. Inexpensive tests for norovirus that do not require sophisticated laboratory equipment are important tools for ensuring that patients receive timely treatment and for containing outbreaks. Herein, we demonstrate a low-cost colorimetric assay that detects norovirus from clinical samples by combining paper-based cell-free transcription-translation systems, isothermal amplification and virus enrichment by synbodies. Using isothermal amplification and cell-free RNA sensing with toehold switches, we demonstrate that the assay enables detection of norovirus GII.4 Sydney from stool down to concentrations of 270 aM in reactions that can be directly read by eye. Furthermore, norovirus-binding synbodies and magnetic beads are used to concentrate the virus and provide a 1000-fold increase in assay sensitivity extending its detection limit to 270 zM. These results demonstrate the utility of paper-based cell-free diagnostic systems for identification of foodborne pathogens and provide a versatile diagnostic assay that can be applied to the concentration, amplification and detection of a broad range of infectious agents.
Collapse
Affiliation(s)
- Duo Ma
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and School of Molecular Sciences, Arizona State University, AZ, USA
| | - Luhui Shen
- Biodesign Center for Innovations in Medicine, The Biodesign Institute and School of Molecular Sciences, Arizona State University, AZ, USA
| | - Kaiyue Wu
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and School of Molecular Sciences, Arizona State University, AZ, USA
| | - Chris W Diehnelt
- Biodesign Center for Innovations in Medicine, The Biodesign Institute and School of Molecular Sciences, Arizona State University, AZ, USA
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute and School of Molecular Sciences, Arizona State University, AZ, USA
| |
Collapse
|