1
|
Guo Y, Shang A, Wang S, Wang M. Multidimensional Analysis of CHMP Family Members in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:2877-2894. [PMID: 35300135 PMCID: PMC8923641 DOI: 10.2147/ijgm.s350228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Background EGFR frequently accumulates and mutates simultaneously in various cancers. Ubiquitinated EGFR proteins can be degraded by the endosomal sorting complex required for transport. Among them, ESCRTIII is mainly composed of CHMP family members. Methods A total of 424 samples from the TCGA-LIHC data set were used to explore the relationship between CHMPs and liver hepatocellular carcinoma (LIHC). Oncomine, the Human Protein Altas, cBioPortal, TISIDB, TIMER, Metascape, and R software were used to facilitate analysis of the role played by CHMPs in the pathogenesis of LIHC. The role of CHMPs in the development of LIHC was analyzed in terms of differential expression, survival, mutation, immunoinfiltration, functional enrichment, and drug sensitivity. Results Differential expression analysis showed that CHMPs were significantly more expressed in LIHC tumor tissue, and the high expression of some CHMPs was closely correlated with clinicopathological stage. The prognosis was worse in the group with high expression of CHMPs. Among them, CHMP4C was considered to play a major role. Gene-mutation analysis and DNA promoter–methylation analysis further revealed possible mechanisms for the aberrant amplification of CHMPs. Immunoinfiltration analysis indicated that CHMPs were closely associated with multiple immune cells and exhibited resistance to various drugs when highly expressed. Conclusion CHMPs were found to be significantly elevated in LIHC and strongly associated with immune-cell infiltration, poor prognosis, multiple star pathways, and drug resistance.
Collapse
Affiliation(s)
- Yu Guo
- Department of General Surgery, Jilin University Second Hospital, Changchun, Jilin, People’s Republic of China
| | - An Shang
- Department of General Surgery, Jilin University Second Hospital, Changchun, Jilin, People’s Republic of China
| | - Shuang Wang
- Department of Dermatology, Jilin University Second Hospital, Changchun, Jilin, People’s Republic of China
- Correspondence: Shuang Wang, Department of Dermatology, Jilin University Second Hospital, 218 Ziqiang Street, Nanguan District, Changchun, Jilin, People’s Republic of China, Tel +86-181-3543-5372, Email
| | - Min Wang
- Department of General Surgery, Jilin University Second Hospital, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
4
|
Kamada Y, Fukuda R, Okiyoneda T. ELISA Based Protein Ubiquitylation Measurement. Bio Protoc 2019; 9:e3430. [PMID: 33654926 PMCID: PMC7853987 DOI: 10.21769/bioprotoc.3430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 08/07/2023] Open
Abstract
Ubiquitylation is a common post-translational modification of cellular proteins that results in proteasomal and lysosomal degradations. Ubiquitylation is generally measured by methods such as immunoblotting using anti-ubiquitin antibodies after isolating the protein-of-interest by denaturing immunoprecipitation. The following protocol can be used to easily quantify the ubiquitylation of the protein-of-interest tagged with biotin by ELISA.
Collapse
Affiliation(s)
- Yuka Kamada
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
5
|
Pascolutti R, Algisi V, Conte A, Raimondi A, Pasham M, Upadhyayula S, Gaudin R, Maritzen T, Barbieri E, Caldieri G, Tordonato C, Confalonieri S, Freddi S, Malabarba MG, Maspero E, Polo S, Tacchetti C, Haucke V, Kirchhausen T, Di Fiore PP, Sigismund S. Molecularly Distinct Clathrin-Coated Pits Differentially Impact EGFR Fate and Signaling. Cell Rep 2019; 27:3049-3061.e6. [PMID: 31167147 PMCID: PMC6581797 DOI: 10.1016/j.celrep.2019.05.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
Adaptor protein 2 (AP2) is a major constituent of clathrin-coated pits (CCPs). Whether it is essential for all forms of clathrin-mediated endocytosis (CME) in mammalian cells is an open issue. Here, we demonstrate, by live TIRF microscopy, the existence of a subclass of relatively short-lived CCPs lacking AP2 under physiological, unperturbed conditions. This subclass is retained in AP2-knockout cells and is able to support the internalization of epidermal growth factor receptor (EGFR) but not of transferrin receptor (TfR). The AP2-independent internalization mechanism relies on the endocytic adaptors eps15, eps15L1, and epsin1. The absence of AP2 impairs the recycling of the EGFR to the cell surface, thereby augmenting its degradation. Accordingly, under conditions of AP2 ablation, we detected dampening of EGFR-dependent AKT signaling and cell migration, arguing that distinct classes of CCPs could provide specialized functions in regulating EGFR recycling and signaling.
Collapse
Affiliation(s)
- Roberta Pascolutti
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Veronica Algisi
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Alexia Conte
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Mithun Pasham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Srigokul Upadhyayula
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Raphael Gaudin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Institut de Recherche en Infectiologie de Montpellier, UMR 9004, CNRS/UM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Elisa Barbieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Giusi Caldieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Chiara Tordonato
- Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefano Confalonieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefano Freddi
- Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Maria Grazia Malabarba
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy.
| |
Collapse
|