1
|
Lawrence SR, Shah KM. Prospects and Current Challenges of Extracellular Vesicle-Based Biomarkers in Cancer. BIOLOGY 2024; 13:694. [PMID: 39336121 PMCID: PMC11428408 DOI: 10.3390/biology13090694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Cancer continues to impose a substantial global health burden, particularly among the elderly, where the ongoing global demographic shift towards an ageing population underscores the growing need for early cancer detection. This is essential for enabling personalised cancer care and optimised treatment throughout the disease course to effectively mitigate the increasing societal impact of cancer. Liquid biopsy has emerged as a promising strategy for cancer diagnosis and treatment monitoring, offering a minimally invasive method for the isolation and molecular profiling of circulating tumour-derived components. The expansion of the liquid biopsy approach to include the detection of tumour-derived extracellular vesicles (tdEVs) holds significant therapeutic opportunity. Evidence suggests that tdEVs carry cargo reflecting the contents of their cell-of-origin and are abundant within the blood, exhibiting superior stability compared to non-encapsulated tumour-derived material, such as circulating tumour nucleic acids and proteins. However, despite theoretical promise, several obstacles hinder the translation of extracellular vesicle-based cancer biomarkers into clinical practice. This critical review assesses the current prospects and challenges facing the adoption of tdEV biomarkers in clinical practice, offering insights into future directions and proposing strategies to overcome translational barriers. By addressing these issues, EV-based liquid biopsy approaches could revolutionise cancer diagnostics and management.
Collapse
Affiliation(s)
- Samuel R Lawrence
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Karan M Shah
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
2
|
Sun M, Zhang H, Liu J, Chen J, Cui Y, Wang S, Zhang X, Yang Z. Extracellular Vesicles: A New Star for Gene Drug Delivery. Int J Nanomedicine 2024; 19:2241-2264. [PMID: 38465204 PMCID: PMC10924919 DOI: 10.2147/ijn.s446224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Recently, gene therapy has become a subject of considerable research and has been widely evaluated in various disease models. Though it is considered as a stand-alone agent for COVID-19 vaccination, gene therapy is still suffering from the following drawbacks during its translation from the bench to the bedside: the high sensitivity of exogenous nucleic acids to enzymatic degradation; the severe side effects induced either by exogenous nucleic acids or components in the formulation; and the difficulty to cross the barriers before reaching the therapeutic target. Therefore, for the successful application of gene therapy, a safe and reliable transport vector is urgently needed. Extracellular vesicles (EVs) are the ideal candidate for the delivery of gene drugs owing to their low immunogenicity, good biocompatibility and low toxicity. To better understand the properties of EVs and their advantages as gene drug delivery vehicles, this review covers from the origin of EVs to the methods of EVs generation, as well as the common methods of isolation and purification in research, with their pros and cons discussed. Meanwhile, the engineering of EVs for gene drugs is also highlighted. In addition, this paper also presents the progress in the EVs-mediated delivery of microRNAs, small interfering RNAs, messenger RNAs, plasmids, and antisense oligonucleotides. We believe this review will provide a theoretical basis for the development of gene drugs.
Collapse
Affiliation(s)
- Man Sun
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Jiayi Liu
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Yaxin Cui
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Xiangyu Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310020, People’s Republic of China
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| |
Collapse
|
3
|
Anastasi F, Botto A, Immordino B, Giovannetti E, McDonnell LA. Proteomics analysis of circulating small extracellular vesicles: Focus on the contribution of EVs to tumor metabolism. Cytokine Growth Factor Rev 2023; 73:3-19. [PMID: 37652834 DOI: 10.1016/j.cytogfr.2023.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The term small extracellular vesicle (sEV) is a comprehensive term that includes any type of cell-derived, membrane-delimited particle that has a diameter < 200 nm, and which includes exosomes and smaller microvesicles. sEVs transfer bioactive molecules between cells and are crucial for cellular homeostasis and particularly during tumor development, where sEVs provide important contributions to the formation of the premetastic niche and to their altered metabolism. sEVs are thus legitimate targets for intervention and have also gained increasing interest as an easily accessible source of biomarkers because they can be rapidly isolated from serum/plasma and their molecular cargo provides information on their cell-of origin. To target sEVs that are specific for a given cell/disease it is essential to identify EV surface proteins that are characteristic of that cell/disease. Mass-spectrometry based proteomics is widely used for the identification and quantification of sEV proteins. The methods used for isolating the sEVs, preparing the sEV sample for proteomics analysis, and mass spectrometry analysis, can have a strong influence on the results and requires careful consideration. This review provides an overview of the approaches used for sEV proteomics and discusses the inherent compromises regarding EV purity versus depth of coverage. Additionally, it discusses the practical applications of the methods to unravel the involvement of sEVs in regulating the metabolism of pancreatic ductal adenocarcinoma (PDAC). The metabolic reprogramming in PDAC includes enhanced glycolysis, elevated glutamine metabolism, alterations in lipid metabolism, mitochondrial dysfunction and hypoxia, all of which are crucial in promoting tumor cell growth. A thorough understanding of these metabolic adaptations is imperative for the development of targeted therapies to exploit PDAC's vulnerabilities.
Collapse
Affiliation(s)
- Federica Anastasi
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; National Enterprise for NanoScience and NanoTechnology, Scuola Normale Superiore, Pisa, Italy; BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Asia Botto
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Benoit Immordino
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elisa Giovannetti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy; Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, PI, Italy.
| |
Collapse
|
4
|
Olajide JS, Xiong L, Yang S, Qu Z, Xu X, Yang B, Wang J, Liu B, Ma X, Cai J. Eimeria falciformis secretes extracellular vesicles to modulate proinflammatory response during interaction with mouse intestinal epithelial cells. Parasit Vectors 2022; 15:245. [PMID: 35804396 PMCID: PMC9270845 DOI: 10.1186/s13071-022-05364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protozoan parasite secretions can be triggered by various modified media and diverse physicochemical stressors. Equally, host-parasite interactions are known to co-opt the exchange and secretion of soluble biochemical components. Analysis of Eimeria falciformis sporozoite secretions in response to interaction with mouse intestinal epithelial cells (MIECs) may reveal parasite secretory motifs, protein composition and inflammatory activities of E. falciformis extracellular vesicles (EVs). METHODS Eimeria falciformis sporozoites were allowed to interact with inactivated MIECs. Parasite secretions were separated into EV and vesicle-free (VF) fractions by discontinuous centrifugation and ultracentrifugation. Secreted EVs were purified in an iodixanol density gradient medium and the protein composition of both EV and VF fractions were analyzed by liquid chromatoraphy-tandem mass spectroscopy. The inflammatory activities of E. falciformis sporozoite EV on MIECs were then investigated. RESULTS During the interaction of E. falciformis sporozoites with inactivated MIECs, the parasite secreted VF and vesicle-bound molecules. Eimeria falciformis vesicles are typical pathogenic protozoan EVs with a mean diameter of 264 ± 2 nm, and enclosed heat shock protein (Hsp) 70 as classical EV marker. Refractile body-associated aspartyl proteinase (or eimepsin), GAP45 and aminopeptidase were the main components of E. falciformis sporozoite EVs, while VF proteins include Hsp90, actin, Vps54 and kinases, among others. Proteomic data revealed that E. falciformis EV and VF proteins are aggregates of bioactive, antigenic and immunogenic molecules which act in concert for E. falciformis sporozoite motility, pathogenesis and survival. Moreover, in MIECs, E. falciformis EVs induced upregulation of gene expression and secretion of IL-1β, IL-6, IL-17, IL-18, MCP1 as well as pyroptosis-dependent caspase 11 and NLRP6 inflammasomes with the concomitant secretion of lactate dehydrogenase. CONCLUSIONS Eimeria falciformis sporozoite interaction with MIECs triggered the secretion of immunogenic and antigenic proteins. In addition, E. falciformis sporozoite EVs constitute parasite-associated molecular pattern that induced inflammatory response and cell death. This study offers additional insight in the secretion and protein composition of E. falciformis secretomes as well as the proinflammatory functions of E. falciformis sporozoite EVs.
Collapse
Affiliation(s)
- Joshua Seun Olajide
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ling Xiong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Zigang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xiao Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Bin Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Jing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| |
Collapse
|
5
|
Corvigno S, Johnson AM, Wong KK, Cho MS, Afshar-Kharghan V, Menter DG, Sood AK. Novel Markers for Liquid Biopsies in Cancer Management: Circulating Platelets and Extracellular Vesicles. Mol Cancer Ther 2022; 21:1067-1075. [PMID: 35545008 DOI: 10.1158/1535-7163.mct-22-0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 02/03/2023]
Abstract
Although radiologic imaging and histologic assessment of tumor tissues are classic approaches for diagnosis and monitoring of treatment response, they have many limitations. These include challenges in distinguishing benign from malignant masses, difficult access to the tumor, high cost of the procedures, and tumor heterogeneity. In this setting, liquid biopsy has emerged as a potential alternative for both diagnostic and monitoring purposes. The approaches to liquid biopsy include cell-free DNA/circulating tumor DNA, long and micro noncoding RNAs, proteins/peptides, carbohydrates/lectins, lipids, and metabolites. Other approaches include detection and analysis of circulating tumor cells, extracellular vesicles, and tumor-activated platelets. Ultimately, reliable use of liquid biopsies requires bioinformatics and statistical integration of multiple datasets to achieve approval in a Clinical Laboratory Improvement Amendments setting. This review provides a balanced and critical assessment of recent discoveries regarding tumor-derived biomarkers in liquid biopsies along with the potential and pitfalls for cancer detection and longitudinal monitoring.
Collapse
Affiliation(s)
- Sara Corvigno
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Maria Johnson
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Min Soon Cho
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Ahn SH, Ryu SW, Choi H, You S, Park J, Choi C. Manufacturing Therapeutic Exosomes: from Bench to Industry. Mol Cells 2022; 45:284-290. [PMID: 35534190 PMCID: PMC9095511 DOI: 10.14348/molcells.2022.2033] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Process of manufacturing therapeutics exosome development for commercialization. The development of exosome treatment starts at the bench, and in order to be commercialized, it goes through the manufacturing, characterization, and formulation stages, production under Good Manufacturing Practice (GMP) conditions for clinical use, and close consultation with regulatory authorities. Exosome, a type of nanoparticles also known as small extracellular vesicles are gaining attention as novel therapeutics for various diseases because of their ability to deliver genetic or bioactive molecules to recipient cells. Although many pharmaceutical companies are gradually developing exosome therapeutics, numerous hurdles remain regarding manufacture of clinical-grade exosomes for therapeutic use. In this mini-review, we will discuss the manufacturing challenges of therapeutic exosomes, including cell line development, upstream cell culture, and downstream purification process. In addition, developing proper formulations for exosome storage and, establishing good manufacturing practice facility for producing therapeutic exosomes remains as challenges for developing clinicalgrade exosomes. However, owing to the lack of consensus regarding the guidelines for manufacturing therapeutic exosomes, close communication between regulators and companies is required for the successful development of exosome therapeutics. This review shares the challenges and perspectives regarding the manufacture and quality control of clinical grade exosomes.
Collapse
Affiliation(s)
- So-Hee Ahn
- ILIAS Biologics Inc., Daejeon 34014, Korea
| | | | - Hojun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea
| | | | - Jun Park
- ILIAS Biologics Inc., Daejeon 34014, Korea
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
7
|
Taghiyar L, Jahangir S, Khozaei Ravari M, Shamekhi MA, Eslaminejad MB. Cartilage Repair by Mesenchymal Stem Cell-Derived Exosomes: Preclinical and Clinical Trial Update and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1326:73-93. [PMID: 33629260 DOI: 10.1007/5584_2021_625] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) and other degenerative joint diseases are characterized by articular cartilage destruction, synovial inflammation, sclerosis of subchondral bone, and loss of extracellular matrix (ECM). Worldwide, these diseases are major causes of disability. Cell therapies have been considered to be the best therapeutic strategies for long-term treatment of articular cartilage diseases. It has been suggested that the mechanism of stem cell-based therapy is related to paracrine secretion of extracellular vesicles (EVs), which are recognized as the main secretion factors of stem cells. EVs, and in particular the subclass exosomes (Exos), are novel therapeutic approaches for treatment of cartilage lesions and OA. The results of recent studies have shown that EVs isolated from mesenchymal stem cells (MSCs) could inhibit OA progression. EVs isolated from various stem cell sources, such as MSCs, may contribute to tissue regeneration of the limbs, skin, heart, and other tissues. Here, we summarize recent findings of preclinical and clinical studies on different MSC-derived EVs and their effectiveness as a treatment for damaged cartilage. The Exos isolation techniques in OA treatment are also highlighted.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahrbano Jahangir
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojtaba Khozaei Ravari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
Vu NB, Nguyen HT, Palumbo R, Pellicano R, Fagoonee S, Pham PV. Stem cell-derived exosomes for wound healing: current status and promising directions. Minerva Med 2020; 112:384-400. [PMID: 33263376 DOI: 10.23736/s0026-4806.20.07205-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wound healing, especially of chronic wounds, is still an unmet therapeutic area since assessment and management are extremely complicated. Although many efforts have been made to treat wounds, all strategies have achieved limited results for chronic wounds. Stem cell-based therapy is considered a promising approach for complex wounds such as those occurring in diabetics. Mesenchymal stem cell transplantation significantly improves wound closure, angiogenesis and wound healing. However, cell therapy is complex, expensive and time-consuming. Recent studies have shown that stem cell-derived exosomes can be an exciting approach to treat wounds. Exosomes derived from mesenchymal stem cells can induce benefit in almost all stages of wound healing, including control of immune responses, inhibition of inflammation, promoting cell proliferation and angiogenesis, while reducing scar formation during the wound healing process. This review aimed at offering an updated overview of the use of exosomes in biological applications, such as wound healing, and addresses not only current applications but also new directions for this next-generation approach in wound healing.
Collapse
Affiliation(s)
- Ngoc B Vu
- Stem Cell Institute, University of Science, Ho Chi Minh, Vietnam.,Vietnam National University - Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Hoa T Nguyen
- Stem Cell Institute, University of Science, Ho Chi Minh, Vietnam.,Vietnam National University - Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Rosanna Palumbo
- Institute of Biostructure and Bioimaging (CNR), Naples, Italy
| | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Phuc V Pham
- Stem Cell Institute, University of Science, Ho Chi Minh, Vietnam - .,Vietnam National University - Ho Chi Minh City, Ho Chi Minh, Vietnam.,Laboratory of Stem Cell Research and Application, Ho Chi Minh, Vietnam
| |
Collapse
|
9
|
Chitoiu L, Dobranici A, Gherghiceanu M, Dinescu S, Costache M. Multi-Omics Data Integration in Extracellular Vesicle Biology-Utopia or Future Reality? Int J Mol Sci 2020; 21:ijms21228550. [PMID: 33202771 PMCID: PMC7697477 DOI: 10.3390/ijms21228550] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous structures derived from the endosomal system or generated by plasma membrane shedding. Due to their composition of DNA, RNA, proteins, and lipids, EVs have garnered a lot of attention as an essential mechanism of cell-to-cell communication, with various implications in physiological and pathological processes. EVs are not only a highly heterogeneous population by means of size and biogenesis, but they are also a source of diverse, functionally rich biomolecules. Recent advances in high-throughput processing of biological samples have facilitated the development of databases comprised of characteristic genomic, transcriptomic, proteomic, metabolomic, and lipidomic profiles for EV cargo. Despite the in-depth approach used to map functional molecules in EV-mediated cellular cross-talk, few integrative methods have been applied to analyze the molecular interplay in these targeted delivery systems. New perspectives arise from the field of systems biology, where accounting for heterogeneity may lead to finding patterns in an apparently random pool of data. In this review, we map the biological and methodological causes of heterogeneity in EV multi-omics data and present current applications or possible statistical methods for integrating such data while keeping track of the current bottlenecks in the field.
Collapse
Affiliation(s)
- Leona Chitoiu
- Ultrastructural Pathology and Bioimaging Laboratory, ‘Victor Babeș’ National Institute of Pathology, Bucharest 050096, Romania; (L.C.); (M.G.)
| | - Alexandra Dobranici
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, ‘Victor Babeș’ National Institute of Pathology, Bucharest 050096, Romania; (L.C.); (M.G.)
- Department of Cellular, Molecular Biology and Histology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest 050663, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest 050663, Romania
| |
Collapse
|
10
|
Salem I, Naranjo NM, Singh A, DeRita R, Krishn SR, Sirman LS, Quaglia F, Duffy A, Bowler N, Sayeed A, Languino LR. Methods for extracellular vesicle isolation from cancer cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:371-384. [PMID: 33062957 PMCID: PMC7556721 DOI: 10.20517/cdr.2019.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cells are known to release different types of vesicles such as small extracellular vesicles (sEVs) and large extracellular vesicles (LEVs). sEVs and LEVs play important roles in intercellular communication, pre-metastatic niche formation, and disease progression; both can be detected cell culture media and biological fluids. sEVs and LEVs contain a variety of protein and RNA cargo, and they are believed to impact many biological functions of the recipient cells upon their internalization or binding to cell surface proteins. It has recently been established that standard isolation techniques, such as differential ultracentrifugation, yield a mixed population of EVs. However, density gradient ultracentrifugation has been reported to allow the isolation of sEVs without cellular debris. Here, we describe the most common methods used to isolate sEVs from cell culture medium, mouse and human plasma, and a new technique for isolating sEVs from tissues as well. This article also provides detailed procedures to isolate LEVs.
Collapse
Affiliation(s)
- Israa Salem
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nicole M Naranjo
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Amrita Singh
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,(Present Address) Astellas Institute for Regenerative Medicine, Marlborough, MA 01752, USA
| | - Rachel DeRita
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,(Present Address) School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shiv Ram Krishn
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Luca S Sirman
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Fabio Quaglia
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alexander Duffy
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nicholas Bowler
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aejaz Sayeed
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.,(Present Address) Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Lucia R Languino
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Xie C, Ji N, Tang Z, Li J, Chen Q. The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers. Mol Cancer 2019; 18:83. [PMID: 30954079 PMCID: PMC6451295 DOI: 10.1186/s12943-019-0985-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
The proliferation and metastasis ability of tumors are mediate by the "mutual dialogue" between cells in the tumor microenvironment (TME). Extracellular vesicles (EVs), mainly exosomes and microvesicles, play an important role in achieving intercellular substance transport and information transfer in the TME. Initially considered "garbage dumpsters" and later referred to as "signal boxes", EVs carry "cargo" (proteins, lipids, or nucleic acids) that can redirect the function of a recipient cell. Currently, the molecular mechanisms and clinical applications of EVs in head and neck cancers (HNCs) are still at an early stage and need to be further investigate. In this review, we provide insight into the TME of HNCs, classifying and summarizing EVs derived from different cell types and illuminating their complex signaling networks involved in mediating tumor proliferation, invasion and metastasis, vascular angiogenesis and cancer drug resistance. In addition, we highlight the application of EVs in HNCs, underlining the special pathological and physiological environment of HNCs. The application of tumor heterogeneous EVs in saliva and circulating blood diagnostics will provide a new perspective for the early screening, real-time monitoring and prognostic risk assessment of HNCs. Given the concept of precise and individual therapy, nanostructured EVs are equipped with superior characteristics of biocompatibility, low immunogenicity, loadability and modification ability, making these molecules one of the new strategies for HNCs treatment.
Collapse
Affiliation(s)
- Changqing Xie
- Department of Oral and Maxillofacial Surgery, Xiangya Stomalogical Hospital & School of Stomatology, Central South University, Changsha, 410078, Hunan, China.,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomalogical Hospital & School of Stomatology, Central South University, Changsha, 410078, Hunan, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
12
|
Tengattini S. Chromatographic Approaches for Purification and Analytical Characterization of Extracellular Vesicles: Recent Advancements. Chromatographia 2018. [DOI: 10.1007/s10337-018-3637-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|