1
|
Effer B, Ulloa D, Dappolonnio C, Muñoz F, Iturrieta-González I, Cotes L, Rojas C, Leal P. Construction of a Human Immune Library from Gallbladder Cancer Patients for the Single-Chain Fragment Variable ( scFv) Antibody Selection against Claudin 18.2 via Phage Display. Antibodies (Basel) 2024; 13:20. [PMID: 38534210 DOI: 10.3390/antib13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Gallbladder cancer (GBC) is a very aggressive malignant neoplasm of the biliary tract with a poor prognosis. There are no specific therapies for the treatment of GBC or early diagnosis tools; for this reason, the development of strategies and technologies that facilitate or allow an early diagnosis of GBC continues to be decisive. Phage display is a robust technique used for the production of monoclonal antibodies (mAbs) involving (1) the generation of gene libraries, (2) the screening and selection of isoforms related to an immobilized antigen, and (3) the in vitro maturation of the affinity of the antibody for the antigen. This research aimed to construct a human immune library from PBMCs of GBC patients and the isolation of scFv-phage clones with specificity against the larger extracellular loop belonging to claudin 18.2, which is an important biomarker overexpressed in GBC as well as gastric cancer. The immune-library-denominated GALLBLA1 was constructed from seven GBC patients and has a diversity of 6.12 × 1010pfu mL-1. After three rounds of panning, we were able to identify clones with specificity against claudin 18.2. GALLBLA1 can contribute to the selection, isolation, and recombinant production of new human mAbs candidates for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabel Iturrieta-González
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Preclinic Science, Medicine Faculty, Universidad de La Frontera, Temuco 4810296, Chile
| | - Loraine Cotes
- Carrera de Ingeniería Pesquera, Facultad de Ingeniería, Universidad del Magdalena, Carrera 32 No. 2208 Sector San Pedro Alejandrino, Santa Marta 470001, Colombia
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos, Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
2
|
Campbell E, Luxton T, Kohl D, Goodchild SA, Walti C, Jeuken LJC. Chimeric Protein Switch Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:1-35. [PMID: 38273207 DOI: 10.1007/10_2023_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Rapid detection of protein and small-molecule analytes is a valuable technique across multiple disciplines, but most in vitro testing of biological or environmental samples requires long, laborious processes and trained personnel in laboratory settings, leading to long wait times for results and high expenses. Fusion of recognition with reporter elements has been introduced to detection methods such as enzyme-linked immunoassays (ELISA), with enzyme-conjugated secondary antibodies removing one of the many incubation and wash steps. Chimeric protein switch biosensors go further and provide a platform for homogenous mix-and-read assays where long wash and incubation steps are eradicated from the process. Chimeric protein switch biosensors consist of an enzyme switch (the reporter) coupled to a recognition element, where binding of the analyte results in switching the activity of the reporter enzyme on or off. Several chimeric protein switch biosensors have successfully been developed for analytes ranging from small molecule drugs to large protein biomarkers. There are two main formats of chimeric protein switch biosensor developed, one-component and multi-component, and these formats exhibit unique advantages and disadvantages. Genetically fusing a recognition protein to the enzyme switch has many advantages in the production and performance of the biosensor. A range of immune and synthetic binding proteins have been developed as alternatives to antibodies, including antibody mimetics or antibody fragments. These are mainly small, easily manipulated proteins and can be genetically fused to a reporter for recombinant expression or manipulated to allow chemical fusion. Here, aspects of chimeric protein switch biosensors will be reviewed with a comparison of different classes of recognition elements and switching mechanisms.
Collapse
Affiliation(s)
- Emma Campbell
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Timothy Luxton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Declan Kohl
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | - Christoph Walti
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds, UK.
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
3
|
Xu H, Xiang X, Ding W, Dong W, Hu Y. The Research Progress on Immortalization of Human B Cells. Microorganisms 2023; 11:2936. [PMID: 38138080 PMCID: PMC10746006 DOI: 10.3390/microorganisms11122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Human B cell immortalization that maintains the constant growth characteristics and antibody expression of B cells in vitro is very critical for the development of antibody drugs and products for the diagnosis and bio-therapeutics of human diseases. Human B cell immortalization methods include Epstein-Barr virus (EBV) transformation, Simian virus 40 (SV40) virus infection, in vitro genetic modification, and activating CD40, etc. Immortalized human B cells produce monoclonal antibodies (mAbs) very efficiently, and the antibodies produced in this way can overcome the immune rejection caused by heterologous antibodies. It is an effective way to prepare mAbs and an important method for developing therapeutic monoclonal antibodies. Currently, the US FDA has approved more than 100 mAbs against a wide range of illnesses such as cancer, autoimmune diseases, infectious diseases, and neurological disorders. This paper reviews the research progress of human B cell immortalization, its methods, and future directions as it is a powerful tool for the development of monoclonal antibody preparation technology.
Collapse
Affiliation(s)
- Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Jiading District, Shanghai 201802, China;
| | - Xinxin Xiang
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- Hengyang Medical College, University of South China, Hengyang 421200, China
| | - Weizhe Ding
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- Peking-Tsinghua-NIBS Joint Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Jiading District, Shanghai 201802, China;
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Garcia-Calvo E, García-García A, Rodríguez Gómez S, Farrais S, Martín R, García T. Development of a new recombinant antibody, selected by phage-display technology from a celiac patient library, for detection of gluten in foods. Curr Res Food Sci 2023; 7:100578. [PMID: 37680694 PMCID: PMC10480589 DOI: 10.1016/j.crfs.2023.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Gluten, a group of ethanol-soluble proteins present in the endosperm of cereals, is extensively used in the food industry due to its ability to improve dough properties. However, gluten is also associated with a range of gluten-related diseases (GRDs), such as wheat allergies, celiac disease, and gluten intolerance. The recommended treatment for GRDs patients is a gluten-free diet. To monitor adherence to this diet, it is necessary to develop gluten-detection systems in food products. Among the available methods, immunodetection systems are the most popular due to their simplicity, reproducibility, and accuracy. The aim of this study was to generate novel high-affinity antibodies against gluten to be used as the primary reactant in an enzyme-linked immunosorbent assay (ELISA) test. These antibodies were developed by constructing an immune library from mRNA obtained from two celiac patients with a high humoral response to gluten-related proteins. The resulting library (composed by 1.1x107) was subjected to selection against gliadin using phage display technology. Following several rounds of selection, the Fab-C was selected, and demonstrated good functionality in ELISA tests, presenting a limit of detection of 15 mg/kg for detection of gluten in spiked mixtures and food products. The methodology can discriminate gluten-free products according to the current legislation.
Collapse
Affiliation(s)
- Eduardo Garcia-Calvo
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Aina García-García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Santiago Rodríguez Gómez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Sergio Farrais
- Servicio de Medicina Digestiva, Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Rosario Martín
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Teresa García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
5
|
Heine PA, Ruschig M, Langreder N, Wenzel EV, Schubert M, Bertoglio F, Hust M. Antibody Selection in Solution Using Magnetic Beads. Methods Mol Biol 2023; 2702:261-274. [PMID: 37679624 DOI: 10.1007/978-1-0716-3381-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Antibody phage display is a valuable in vitro technology to generate recombinant, sequence-defined antibodies for research, diagnostics, and therapy. Up to now (autumn 2022), 14 FDA/EMA-approved therapeutic antibodies were developed using phage display, including the world best-selling antibody adalimumab. Additionally, recombinant, sequence-defined antibodies have significant advantages over their polyclonal counterparts.For a successful in vitro antibody generation by phage display, a suitable panning strategy is highly important. We present in this book chapter the panning in solution and its advantages over panning with immobilized antigens and give detailed protocols for the panning and screening procedure.
Collapse
Affiliation(s)
- Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
6
|
Raeisi H, Azimirad M, Nabavi-Rad A, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Application of recombinant antibodies for treatment of Clostridioides difficile infection: Current status and future perspective. Front Immunol 2022; 13:972930. [PMID: 36081500 PMCID: PMC9445313 DOI: 10.3389/fimmu.2022.972930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile (C. difficile), known as the major cause of antibiotic-associated diarrhea, is regarded as one of the most common healthcare-associated bacterial infections worldwide. Due to the emergence of hypervirulent strains, development of new therapeutic methods for C. difficile infection (CDI) has become crucially important. In this context, antibodies have been introduced as valuable tools in the research and clinical environments, as far as the effectiveness of antibody therapy for CDI was reported in several clinical investigations. Hence, production of high-performance antibodies for treatment of CDI would be precious. Traditional approaches of antibody generation are based on hybridoma technology. Today, application of in vitro technologies for generating recombinant antibodies, like phage display, is considered as an appropriate alternative to hybridoma technology. These techniques can circumvent the limitations of the immune system and they can be exploited for production of antibodies against different types of biomolecules in particular active toxins. Additionally, DNA encoding antibodies is directly accessible in in vitro technologies, which enables the application of antibody engineering in order to increase their sensitivity and specificity. Here, we review the application of antibodies for CDI treatment with an emphasis on recombinant fragment antibodies. Also, this review highlights the current and future prospects of the aforementioned approaches for antibody-mediated therapy of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
BalcioĞlu BK, Denİzcİ ÖncÜ M, ÖztÜrk HÜ, YÜcel F, Kaya F, Serhatli M, ÜlbeĞİ Polat H, Tekİn Ş, Özdemİr Bahadir A. SARS-CoV-2 neutralizing antibody development strategies. Turk J Biol 2020; 44:203-214. [PMID: 32595357 PMCID: PMC7314503 DOI: 10.3906/biy-2005-91] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In December 2019 a novel coronavirus was detected in Wuhan City of Hubei Province-China. Owing to a high rate of transmission from human to human, the new virus called SARS-CoV-2 differed from others by its unexpectedly rapid spread. The World Health Organization (WHO) described the most recent coronavirus epidemic as a global pandemic in March 2020. The virus spread triggered a health crisis (the COVID-19 disease) within three months, with socioeconomic implications. No approved targeted-therapies are available for COVID-19, yet. However, it is foreseen that antibody-based treatments may provide an immediate cure for patients. Current neutralizing antibody development studies primarily target the S protein among the structural elements of SARS-CoV-2, which mediates the cell entry of the virus through the angiotensin converting enzyme 2 (ACE2) receptor of host cells. This review aims to provide some of the neutralizing antibody development strategies for SARS-CoV-2 and in vitro and in vivo neutralization assays.
Collapse
Affiliation(s)
- Bertan Koray BalcioĞlu
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Melis Denİzcİ ÖncÜ
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Hasan Ümit ÖztÜrk
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Fatıma YÜcel
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Filiz Kaya
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Müge Serhatli
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Hivda ÜlbeĞİ Polat
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| | - Şaban Tekİn
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
- Department of Basic Medical Sciences, Faculty of Medicine, University of Health Sciences, İstanbul Turkey
| | - Aylin Özdemİr Bahadir
- Genetic Engineering and Biotechnology Institute, Marmara Research Center, TÜBİTAK, Kocaeli Turkey
| |
Collapse
|
8
|
Abstract
Phage display antibody libraries have proven an invaluable resource for the isolation of diagnostic and potentially therapeutic antibodies, the latter usually being antibody fragments converted into IgG formats. Recent advances in the production of highly diverse and functional antibody libraries are considered here, including for Fabs, scFvs and nanobodies. These advances include codon optimisation during generation of CDR diversity, improved display levels using novel signal sequences, molecular chaperones and isomerases and the use of highly stable scaffolds with relatively high expression levels. In addition, novel strategies for the batch reformatting of scFv and Fab phagemid libraries, derived from phage panning, into IgG formats are described. These strategies allow the screening of antibodies in the end-use format, facilitating more efficient selection of potential therapeutics.
Collapse
|
9
|
Wenzel EV, Roth KDR, Russo G, Fühner V, Helmsing S, Frenzel A, Hust M. Antibody Phage Display: Antibody Selection in Solution Using Biotinylated Antigens. Methods Mol Biol 2020; 2070:143-155. [PMID: 31625094 DOI: 10.1007/978-1-4939-9853-1_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antibody phage display is the most used in vitro technology to generate recombinant, mainly human, antibodies as tools for research, for diagnostic assays, and for therapeutics. Up to now (autumn 2018), eleven FDA/EMA-approved therapeutic antibodies were developed using phage display, including the world best-selling antibody adalimumab.A key to generate successfully human antibodies in vitro is the choice of the most appropriate antibody selection method, for our goal. In this book chapter, we describe the antibody selection process (panning) in solution and its advantages over panning on immobilized antigens. Detailed protocols on the panning procedure and the screening of monoclonal binders are given.
Collapse
Affiliation(s)
- Esther V Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristian D R Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Helmsing
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - André Frenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
- YUMAB GmbH, Science Campus Braunschweig Süd, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.
- YUMAB GmbH, Science Campus Braunschweig Süd, Braunschweig, Germany.
| |
Collapse
|
10
|
Yang X, Xie S, Yang X, Cueva JC, Hou X, Tang Z, Yao H, Mo F, Yin S, Liu A, Lu X. Opportunities and Challenges for Antibodies against Intracellular Antigens. Am J Cancer Res 2019; 9:7792-7806. [PMID: 31695801 PMCID: PMC6831482 DOI: 10.7150/thno.35486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Therapeutic antibodies are one most significant advances in immunotherapy, the development of antibodies against disease-associated MHC-peptide complexes led to the introduction of TCR-like antibodies. TCR-like antibodies combine the recognition of intracellular proteins with the therapeutic potency and versatility of monoclonal antibodies (mAb), offering an unparalleled opportunity to expand the repertoire of therapeutic antibodies available to treat diseases like cancer. This review details the current state of TCR-like antibodies and describes their production, mechanisms as well as their applications. In addition, it presents an insight on the challenges that they must overcome in order to become commercially and clinically validated.
Collapse
|
11
|
Li G, Ding L, Ma X, Cai Q, Ying T, Wei F. Establishment of Novel Monoclonal Fabs Specific for Epstein-Barr Virus Encoded Latent Membrane Protein 1. Virol Sin 2019; 34:467-470. [PMID: 30949961 DOI: 10.1007/s12250-019-00103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/23/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Gaoxin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Ling Ding
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaojing Ma
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Qiliang Cai
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tianlei Ying
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|