1
|
Shekhar Patil M, Richter E, Fanning L, Hendrix J, Wyns A, Barrero Santiago L, Nijs J, Godderis L, Polli A. Epigenetic changes in patients with post-acute COVID-19 symptoms (PACS) and long-COVID: A systematic review. Expert Rev Mol Med 2024; 26:e29. [PMID: 39435694 PMCID: PMC11505605 DOI: 10.1017/erm.2024.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Up to 30% of people infected with SARS-CoV-2 report disabling symptoms 2 years after the infection. Over 100 persistent symptoms have been associated with Post-Acute COVID-19 Symptoms (PACS) and/or long-COVID, showing a significant clinical heterogeneity. To develop effective, patient-targeted treatment, a better understanding of underlying mechanisms is needed. Epigenetics has helped elucidating the pathophysiology of several health conditions and it might help unravelling inter-individual differences in patients with PACS and long-COVID. As accumulating research is exploring epigenetic mechanisms in PACS and long-COVID, we systematically summarized the available literature on the topic. METHODS We interrogated five databases (Medline, Embase, Web of Science, Scopus and medXriv/bioXriv) and followed PRISMA and SWiM guidelines to report our results. RESULTS Eight studies were included in our review. Six studies explored DNA methylation in PACS and/or long-COVID, while two studies explored miRNA expression in long-COVID associated with lung complications. Sample sizes were mostly small and study quality was low or fair. The main limitation of the included studies was a poor characterization of the patient population that made a homogeneous synthesis of the literature challenging. However, studies on DNA methylation showed that mechanisms related to the immune and the autonomic nervous system, and cell metabolism might be implicated in the pathophysiology of PACS and long-COVID. CONCLUSION Epigenetic changes might help elucidating PACS and long-COVID underlying mechanisms, aid subgrouping, and point towards tailored treatments. Preliminary evidence is promising but scarce. Biological and epigenetic research on long-COVID will benefit millions of people suffering from long-COVID and has the potential to be transferable and benefit other conditions as well, such as Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We urge future research to employ longitudinal designs and provide a better characterization of included patients.
Collapse
Affiliation(s)
- Madhura Shekhar Patil
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Emma Richter
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Lara Fanning
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jolien Hendrix
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Research Foundation, Flanders (FWO)
| | - Arne Wyns
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laura Barrero Santiago
- Department of Cell Biology, Genetics, Pharmacology and Histology – University of Valladolid, Spain
| | - Jo Nijs
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- External Service for Prevention and Protection at Work (IDEWE), Leuven, Belgium
| | - Andrea Polli
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Research Foundation, Flanders (FWO)
| |
Collapse
|
2
|
Merzbacher C, Ryan B, Goldsborough T, Hillary RF, Campbell A, Murphy L, McIntosh AM, Liewald D, Harris SE, McRae AF, Cox SR, Cannings TI, Vallejos CA, McCartney DL, Marioni RE. Integration of datasets for individual prediction of DNA methylation-based biomarkers. Genome Biol 2023; 24:278. [PMID: 38053194 PMCID: PMC10696831 DOI: 10.1186/s13059-023-03114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Epigenetic scores (EpiScores) can provide biomarkers of lifestyle and disease risk. Projecting new datasets onto a reference panel is challenging due to separation of technical and biological variation with array data. Normalisation can standardise data distributions but may also remove population-level biological variation. RESULTS We compare two birth cohorts (Lothian Birth Cohorts of 1921 and 1936 - nLBC1921 = 387 and nLBC1936 = 498) with blood-based DNA methylation assessed at the same chronological age (79 years) and processed in the same lab but in different years and experimental batches. We examine the effect of 16 normalisation methods on a novel BMI EpiScore (trained in an external cohort, n = 18,413), and Horvath's pan-tissue DNA methylation age, when the cohorts are normalised separately and together. The BMI EpiScore explains a maximum variance of R2=24.5% in BMI in LBC1936 (SWAN normalisation). Although there are cross-cohort R2 differences, the normalisation method makes a minimal difference to within-cohort estimates. Conversely, a range of absolute differences are seen for individual-level EpiScore estimates for BMI and age when cohorts are normalised separately versus together. While within-array methods result in identical EpiScores whether a cohort is normalised on its own or together with the second dataset, a range of differences is observed for between-array methods. CONCLUSIONS Normalisation methods returning similar EpiScores, whether cohorts are analysed separately or together, will minimise technical variation when projecting new data onto a reference panel. These methods are important for cases where raw data is unavailable and joint normalisation of cohorts is computationally expensive.
Collapse
Affiliation(s)
| | - Barry Ryan
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | | | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David Liewald
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Simon R Cox
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Timothy I Cannings
- Maxwell Institute for Mathematical Sciences, School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Catalina A Vallejos
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- The Alan Turing Institute, London, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
3
|
Zhang S, Shi K, Lyu N, Zhang Y, Liang G, Zhang W, Wang X, Wen H, Wen L, Ma H, Wang J, Yu X, Guan L. Genome-wide DNA methylation analysis in families with multiple individuals diagnosed with schizophrenia and intellectual disability. World J Biol Psychiatry 2023; 24:741-753. [PMID: 37017099 DOI: 10.1080/15622975.2023.2198595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES Schizophrenia (SZ) and intellectual disability (ID) are both included in the continuum of neurodevelopmental disorders (NDDs). DNA methylation is known to be important in the occurrence of NDDs. The family study is conducive to eliminate the effects of relative epigenetic backgrounds, and to screen for differentially methylated positions (DMPs) and regions (DMRs) that are truly associated with NDDs. METHODS Four monozygotic twin families were recruited, and both twin individuals suffered from NDDs (either SZ, ID, or SZ plus ID). Genome-wide methylation analysis was performed in all samples and each family. DMPs and DMRs between NDD patients and unaffected individuals were identified. Functional and pathway enrichment analyses were performed on the annotated genes. RESULTS Two significant DMPs annotated to CYP2E1 were found in all samples. In Family One, 1476 DMPs mapped to 880 genes, and 162 DMRs overlapping with 153 unique genes were recognised. Our results suggested that the altered methylation levels of FYN, STAT3, RAC1, and NR4A2 were associated with the development of SZ and ID. Neurodevelopment and the immune system may participate in the occurrence of SZ and ID. CONCLUSIONS Our findings suggested that DNA methylation participated in the development of NDDs by affecting neurodevelopment and the immune system.
Collapse
Affiliation(s)
- Shengmin Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Kaiyu Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Lyu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Beijing Anding Hospital, Beijing Key Laboratory of Mental Disorders, The National Clinical Research Centre for Mental Disorders, The Advanced Innovation Centre for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yunshu Zhang
- The Sixth People's Hospital of Hebei Province, Hebei Mental Health Centre, Baoding, Hebei, China
| | | | - Wufang Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xijin Wang
- The First Psychiatric Hospital of Harbin, Harbin, Heilongjiang, China
| | - Hong Wen
- The Third Hospital of Mianyang, Mianyang, Sichuan, China
| | - Liping Wen
- Zigong Mental Health Centre, Zigong, Sichuan, China
| | - Hong Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jijun Wang
- Shanghai Mental Health Centre, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lili Guan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
4
|
Hasegawa K, Nakabayashi K, Ishiwata K, Kasuga Y, Hata K, Tanaka M. A capture methyl-seq protocol with improved efficiency and cost-effectiveness using pre-pooling and enzymatic conversion. BMC Res Notes 2023; 16:141. [PMID: 37415255 DOI: 10.1186/s13104-023-06401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/18/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVE The opportunities for sequencing-based methylome analysis of clinical samples are increasing. To reduce its cost and the amount of genomic DNA required for library preparation, we aimed to establish a capture methyl-seq protocol, which adopts pre-pooling of multiple libraries before hybridization capture and TET2/APOBEC-mediated conversion of unmethylated cytosine to thymine. RESULTS We compared a publicly available dataset generated by the standard Agilent protocol of SureSelect XT Human Methyl-Seq Kit and our dataset obtained by our modified protocol, EMCap, that adopted sample pre-pooling and enzymatic conversion. We confirmed that the quality of DNA methylation data was comparable between the two datasets. As our protocol, EMCap, is more cost-effective and reduces the amount of input genomic DNA, it would serve as a better choice for clinical methylome sequencing.
Collapse
Affiliation(s)
- Keita Hasegawa
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo, 160-0016, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yoshifumi Kasuga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo, 160-0016, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
- Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku, Tokyo, 160-0016, Japan
| |
Collapse
|
5
|
Perera BPU, Morgan RK, Polemi KM, Sala-Hamrick KE, Svoboda LK, Dolinoy DC. PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Curr Environ Health Rep 2022; 9:650-660. [PMID: 35917009 DOI: 10.1007/s40572-022-00372-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW: The epigenome modulates gene expression in response to environmental stimuli. Modifications to the epigenome are potentially reversible, making them a promising therapeutic approach to mitigate environmental exposure effects on human health. This review details currently available genome and epigenome editing technologies and highlights ncRNA, including piRNA, as potential tools for targeted epigenome editing. RECENT FINDINGS: Zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR) associated nuclease (CRISPR/Cas) research has significantly advanced genome editing technology, with broad promise in genetic research and targeted therapies. Initial epigenome-directed therapies relied on global modification and suffered from limited specificity. Adapted from current genome editing tools, zinc finger protein (ZFP), TALE, and CRISPR/nuclease-deactivated Cas (dCas) systems now confer locus-specific epigenome editing, with promising applicability in the field of environmental health sciences. However, high incidence of off-target effects and time taken for screening limit their use. FUTURE DEVELOPMENT: ncRNA serve as a versatile biomarker with well-characterized regulatory mechanisms that can easily be adapted to edit the epigenome. For instance, the transposon silencing mechanism of germline PIWI-interacting RNAs (piRNA) could be engineered to specifically methylate a given gene, overcoming pitfalls of current global modifiers. Future developments in epigenome editing technologies will inform risk assessment through mechanistic investigation and serve as potential modes of intervention to mitigate environmentally induced adverse health outcomes later in life.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Rachel K Morgan
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn M Polemi
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kimmie E Sala-Hamrick
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Laurie K Svoboda
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
- School of Public Health, Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Childhood Trauma and Epigenetics: State of the Science and Future. Curr Environ Health Rep 2022; 9:661-672. [PMID: 36242743 DOI: 10.1007/s40572-022-00381-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is a great deal of interest regarding the biological embedding of childhood trauma and social exposures through epigenetic mechanisms, including DNA methylation (DNAm), but a comprehensive understanding has been hindered by issues of limited reproducibility between studies. This review presents a summary of the literature on childhood trauma and DNAm, highlights issues in the field, and proposes some potential solutions. RECENT FINDINGS Investigations of the associations between DNAm and childhood trauma are commonly performed using candidate gene approaches, specifically involving genes related to neurological and stress pathways. Childhood trauma is defined in a wide range of ways in several societal contexts. However, although variations in DNAm are frequently found in stress-related genes, unsupervised epigenome-wide association studies (EWAS) have shown limited reproducibility both between studies and in relating these changes to exposures. The reproducibility of childhood trauma DNAm studies, and the field of social epigenetics in general, may be improved by increasing sample sizes, standardizing variables, making use of effect size thresholds, collecting longitudinal and intervention samples, appropriately accounting for known confounding factors, and applying causal analysis wherever possible, such as "two-step epigenetic Mendelian randomization."
Collapse
|
7
|
Leal A, Sidransky D, Brait M. Tissue and Cell-Free DNA-Based Epigenomic Approaches for Cancer Detection. Clin Chem 2020; 66:105-116. [PMID: 31843869 DOI: 10.1373/clinchem.2019.303594] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Over 9 million people die of cancer each year worldwide, reflecting the unmet need for effective biomarkers for both cancer diagnosis and prognosis. Cancer diagnosis is complex because the majority of malignant tumors present with long periods of latency and lack of clinical presentation at early stages. During carcinogenesis, premalignant cells experience changes in their epigenetic landscapes, such as differential DNA methylation, histone modifications, nucleosome positioning, and higher orders of chromatin changes that confer growth advantage and contribute to determining the biologic phenotype of human cancers. CONTENT Recent progress in microarray platforms and next-generation sequencing approaches has allowed the characterization of abnormal epigenetic patterns genome wide in a large number of cancer cases. The sizable amount of processed data also comes with challenges regarding data management and assessment for effective biomarker exploration to be further applied in prospective clinical trials. Epigenetics-based single or panel tests of genes are being explored for clinical management to fulfill unmet needs in oncology. The advance of these tests to the clinical routine will depend on rigorous, extensive, and independent validation in well-annotated cohort of patients and commercial development of clinical routine-friendly and adequate procedures. SUMMARY In this review we discuss the analytic validation of tissue and cell-free DNA-based epigenomic approaches for early cancer detection, diagnosis, and treatment monitoring and the clinical utility of candidate epigenetic alterations applied to colorectal, glioblastoma, breast, prostate, bladder, and lung cancer management.
Collapse
Affiliation(s)
- Alessandro Leal
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - David Sidransky
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mariana Brait
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Cirkovic A, Garovic V, Milin Lazovic J, Milicevic O, Savic M, Rajovic N, Aleksic N, Weissgerber T, Stefanovic A, Stanisavljevic D, Milic N. Systematic review supports the role of DNA methylation in the pathophysiology of preeclampsia: a call for analytical and methodological standardization. Biol Sex Differ 2020; 11:36. [PMID: 32631423 PMCID: PMC7336649 DOI: 10.1186/s13293-020-00313-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Studies have recently examined the role of epigenetic mechanisms in preeclampsia pathophysiology. One commonly examined epigenetic process is DNA methylation. This heritable epigenetic marker is involved in many important cellular functions. The aim of this study was to establish the association between DNA methylation and preeclampsia and to critically appraise the roles of major study characteristics that can significantly impact the association between DNA methylation and preeclampsia. MAIN BODY A systematic review was performed by searching PubMed, Web of Science, and EMBASE for original research articles published over time, until May 31, 2019 in English. Eligible studies compared DNA methylation levels in pregnant women with vs. without preeclampsia. Ninety articles were included. Epigenome-wide studies identified hundreds of differentially methylated places/regions in preeclamptic patients. Hypomethylation was the predominant finding in studies analyzing placental tissue (14/19), while hypermethylation was detected in three studies that analyzed maternal white blood cells (3/3). In candidate gene studies, methylation alterations for a number of genes were found to be associated with preeclampsia. A greater number of differentially methylated genes was found when analyzing more severe preeclampsia (70/82), compared to studies analyzing less severe preeclampsia vs. controls (13/27). A high degree of heterogeneity existed among the studies in terms of methodological study characteristics including design (study design, definition of preeclampsia, control group, sample size, confounders), implementation (biological sample, DNA methylation method, purification of DNA extraction, and validation of methylation), analysis (analytical method, batch effect, genotyping, and gene expression), and data presentation (methylation quantification measure, measure of variability, reporting). Based on the results of this review, we provide recommendations for study design and analytical approach for further studies. CONCLUSIONS The findings from this review support the role of DNA methylation in the pathophysiology of preeclampsia. Establishing field-wide methodological and analytical standards may increase value and reduce waste, allowing researchers to gain additional insights into the role of DNA methylation in the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- A Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - V Garovic
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - J Milin Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - O Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - M Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - T Weissgerber
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Charité - Universitätsmedizin Berlin, Berlin Institute of Health, QUEST Center, Berlin, Germany
| | - A Stefanovic
- Clinic for Gynecology and Obstetrics, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia. .,Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Wang ZN, Gao WJ, Wang BQ, Cao WH, Lv J, Yu CQ, Pang ZC, Cong LM, Wang H, Wu XP, Liu Y, Li LM. [Correlation between fasting plasma glucose, HbA1c and DNA methylation in adult twins]. JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:425-431. [PMID: 32541973 DOI: 10.19723/j.issn.1671-167x.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To explore the cytidine-phosphate-guanosine (CPG) sites associated with fas-ting plasma glucose (FPG) and glycated haemoglobin (HbA1c) in twins. METHODS In the study, 169 pairs of monozygotic twins were recruited in Qingdao, Zhejiang, Jiangsu, Sichuan and Heilongjiang in June to December of 2013 and June 2017 to October 2018. The methylation was detected by Illumina Infinium HumanMethylation450 BeadChip and Illumina Infinium MethylationEPIC BeadChip. According to the Linear Mixed Effect model (LME model), fasting plasma glucose and HbA1c were taken as the main effects, the methylation level (β value) was taken as the dependent variable, continuous variables, such as age, body mass index (BMI), blood pressure, components of blood cells, surrogate variables generated by SVA, and categorical variables, such as gender, smoking and drinking status, hypoglycemic drugs taking, were included in the fixed effect model as covariates, and the identity numbers (ID) of the twins was included in the random effect model. The intercept was set as a random. Regression analysis was carried out to find out the CpG sites related to fasting blood glucose or HbA1c, respectively. RESULTS In this study, 338 monozygotic twins (169 pairs) were included, with 412 459 CpG loci. Among them, 114 pairs were male, and 55 pairs were female, with an average age of (48.2±11.9) years. After adjustment of age, gender, BMI, blood pressure, smoking, drinking, blood cell composition, and other covariates, and multiple comparison test, 7 CpG sites (cg19693031, cg01538969, cg08501915, cg04816311, ch.8.1820050F, cg06721411, cg26608667) were found related to fasting blood glucose, 3 of which (cg08501915, ch.8.1820050f, cg26608667) were the newly found sites in this study; whereas 10 CpG sites (cg19693031, cg04816311, cg01538969, cg01339781, cg01676795, cg24667115, cg09029192, cg20697417, ch.4.1528651F, cg16097041) were found related to HbA1c, and 4 of which(cg01339781, cg24667115, cg20697417, and ch.4.1528651f) were new. We found that cg19693031 in TXNIP gene was the lowest P-value site in the association analysis between DNA methylation and fas-ting plasma glucose and HbA1c (PFPG=2.42×10-19, FDRFPG<0.001; PHbA1c=1.72×10-19, FDRHbA1c<0.001). CONCLUSION In this twin study, we found new CpG sites related to fasting blood glucose and HbA1c, and provided some clues that partly revealed the potential mechanism of blood glucose metabolism in terms of DNA methylation, but it needed further verification in external larger samples.
Collapse
Affiliation(s)
- Z N Wang
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - W J Gao
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - B Q Wang
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - W H Cao
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - J Lv
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - C Q Yu
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - Z C Pang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266033, Shandong, China
| | - L M Cong
- Zhejiang Center for Disease Control and Prevention, Hangzhou 310051, China
| | - H Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, China
| | - X P Wu
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Y Liu
- Center for Disease Control and prevention, Heilongjiang Agricultural Reclamation Bureau, Harbin 150090, China
| | - L M Li
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
10
|
Genetic and epigenetic analyses of panic disorder in the post-GWAS era. J Neural Transm (Vienna) 2020; 127:1517-1526. [PMID: 32388794 PMCID: PMC7578165 DOI: 10.1007/s00702-020-02205-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
Panic disorder (PD) is a common and debilitating neuropsychiatric disorder characterized by panic attacks coupled with excessive anxiety. Both genetic factors and environmental factors play an important role in PD pathogenesis and response to treatment. However, PD is clinically heterogeneous and genetically complex, and the exact genetic or environmental causes of this disorder remain unclear. Various approaches for detecting disease-causing genes have recently been made available. In particular, genome-wide association studies (GWAS) have attracted attention for the identification of disease-associated loci of multifactorial disorders. This review introduces GWAS of PD, followed by a discussion about the limitations of GWAS and the major challenges facing geneticists in the post-GWAS era. Alternative strategies to address these challenges are then proposed, such as epigenome-wide association studies (EWAS) and rare variant association studies (RVAS) using next-generation sequencing. To date, however, few reports have described these analyses, and the evidence remains insufficient to confidently identify or exclude rare variants or epigenetic changes in PD. Further analyses are therefore required, using sample sizes in the tens of thousands, extensive functional annotations, and highly targeted hypothesis testing.
Collapse
|
11
|
The influence of maternal and infant nutrition on cardiometabolic traits: novel findings and future research directions from four Canadian birth cohort studies. Proc Nutr Soc 2019; 78:351-361. [PMID: 31140389 DOI: 10.1017/s0029665119000612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A mother's nutritional choices while pregnant may have a great influence on her baby's development in the womb and during infancy. There is evidence that what a mother eats during pregnancy interacts with her genes to affect her child's susceptibility to poor health outcomes including childhood obesity, pre-diabetes, allergy and asthma. Furthermore, after what an infant eats can change his or her intestinal bacteria, which can further influence the development of these poor outcomes. In the present paper, we review the importance of birth cohorts, the formation and early findings from a multi-ethnic birth cohort alliance in Canada and summarise our future research directions for this birth cohort alliance. We summarise a method for harmonising collection and analysis of self-reported dietary data across multiple cohorts and provide examples of how this birth cohort alliance has contributed to our understanding of gestational diabetes risk; ethnic and diet-influences differences in the healthy infant microbiome; and the interplay between diet, ethnicity and birth weight. Ongoing work in this birth cohort alliance will focus on the use of metabolomic profiling to measure dietary intake, discovery of unique diet-gene and diet-epigenome interactions, and qualitative interviews with families of children at risk of metabolic syndrome. Our findings to-date and future areas of research will advance the evidence base that informs dietary guidelines in pregnancy, infancy and childhood, and will be relevant to diverse and high-risk populations of Canada and other high-income countries.
Collapse
|
12
|
Zaimi I, Pei D, Koestler DC, Marsit CJ, De Vivo I, Tworoger SS, Shields AE, Kelsey KT, Michaud DS. Variation in DNA methylation of human blood over a 1-year period using the Illumina MethylationEPIC array. Epigenetics 2018; 13:1056-1071. [PMID: 30270718 PMCID: PMC6342169 DOI: 10.1080/15592294.2018.1530008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/02/2018] [Accepted: 09/22/2018] [Indexed: 12/29/2022] Open
Abstract
Assessing DNA methylation profiles in human blood has become a major focus of epidemiologic inquiry. Understanding variability in CpG-specific DNA methylation over moderate periods of time is a critical first step in identifying CpG sites that are candidates for DNA methylation-based etiologic, diagnostic and prognostic predictors of pathogenesis. Using the Illumina MethylationEPIC [850K] BeadArray, DNA methylation was profiled in paired whole blood samples collected approximately 1 year apart from 35 healthy women enrolled in the Nurses Study II cohort. The median intraclass correlation coefficient (ICC) across all CpG loci was 0.19 [Interquartile Range (IQR) 0.00-0.50]; 74.8% of ICCs were in the low range (0-0.5), 16.9% in the mid-range of ICCs (0.5-0.8), and 8.3% in the high-range of ICCs (0.8-1). ICCs were similar for CpG probes on the 450K Illumina array (median 0.17) and the new probes added to the 850K array (median 0.21). ICCs for CpG loci on the sex chromosomes and known metastable epialleles were high (median 0.71, 0.97, respectively), and ICCs among methylation quantitative trait loci (mQTL) CpGs were significantly higher as compared to non-mQTL CpGs (median 0.73, 0.16, respectively, P < 2 × 10-16). We observed wide variation in DNA methylation stability over a 1-year period. Probes considered non-stable, due to substantial variation over a moderate period of time and with minimal variability across individuals could be removed in large epidemiological studies. Moreover, adjusting for technical variation that arises from using high-dimensional arrays is critical.
Collapse
Affiliation(s)
- Ina Zaimi
- a Department of Public Health & Community Medicine, Tufts University School of Medicine , Tufts University , Boston , USA
| | - Dong Pei
- b Department of Biostatistics , University of Kansas Medical Center , Kansas City , USA
- c University of Kansas Cancer Center , The University of Kansas Medical Center , Kansas City , USA
| | - Devin C Koestler
- b Department of Biostatistics , University of Kansas Medical Center , Kansas City , USA
- c University of Kansas Cancer Center , The University of Kansas Medical Center , Kansas City , USA
| | - Carmen J Marsit
- d Department of Environmental Health and Department of Epidemiology, Rollins School of Public Health , Emory University , Atlanta , USA
| | - Immaculata De Vivo
- e Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , USA
| | - Shelley S Tworoger
- f Department of Cancer Epidemiology , Moffitt Cancer Center , Tampa , USA
- g Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , USA
| | - Alexandra E Shields
- h Department of Medicine , Harvard Medical School , Boston , MA , USA
- k Harvard/MGH Center on Genomics, Vulnerable Populations, and Health Disparities , Massachusetts General Hospital , Boston , MA , USA
| | - Karl T Kelsey
- i Department of Epidemiology , Brown University , Providence , USA
- j Department of Pathology and Laboratory Medicine , Brown University , Providence , USA
| | - Dominique S Michaud
- a Department of Public Health & Community Medicine, Tufts University School of Medicine , Tufts University , Boston , USA
- i Department of Epidemiology , Brown University , Providence , USA
| |
Collapse
|