1
|
Shen M, Zhao H, Han M, Su L, Cui X, Li D, Liu L, Wang C, Yang F. Alcohol-induced gut microbiome dysbiosis enhances the colonization of Klebsiella pneumoniae on the mouse intestinal tract. mSystems 2024; 9:e0005224. [PMID: 38345382 PMCID: PMC10949497 DOI: 10.1128/msystems.00052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 03/20/2024] Open
Abstract
Chronic alcohol consumption, an important risk factor for diseases and deaths, can cause intestinal microbiota dysbiosis and increase the infection of some opportunistic pathogens. However, the current studies on the effects of alcohol-induced intestinal microbiota dysbiosis on gut colonization of Klebsiella pneumoniae are still scarce. In the present study, we established a binge-on-chronic alcohol model in mice to identify the characteristics of alcohol-induced intestinal microbiome and metabolite dysbiosis using multi-omics and explored the effects and potential mechanisms of these dysbioses on the intestinal colonization of K. pneumoniae. The results show that chronic alcohol consumption alters the diversity and composition of gut microbiota (including bacteria and fungi), decreases the complexity of the interaction between intestinal bacteria and fungi, disturbs the gut metabolites, and promotes the colonization of K. pneumoniae on the gut of mice. The relevance analyses find that alcohol-induced gut microbiome dysbiosis has a strong correlation with the alteration of secondary bile acids. In vitro results suggest that the high concentration of lithocholic acid, a secondary bile acid, could significantly inhibit the proliferation of K. pneumoniae, and the adhesion of K. pneumoniae to Caco-2 cells. Our results indicate that alcohol-induced microbiome dysbiosis contributes to decreased levels of secondary bile acids, which was one of the main reasons affecting the colonization of K. pneumoniae in mice's intestines. Some secondary bile acids (e.g., lithocholic acid) might be a potential drug to prevent the colonization and spread of K. pneumoniae.IMPORTANCEAlcohol is one of the most commonly misused substances in our lives. However, long-term heavy drinking will increase the colonization of some opportunistic pathogens (e.g., Klebsiella pneumoniae) in the body. Here, we revealed that binge-on-chronic alcohol consumption disrupted the balance between gut bacteria and fungi, induced the gut microbiome and metabolites dysbiosis, and promoted the colonization of K. pneumoniae in the intestine of mice. In particular, alcohol-taking disrupted intestinal bile acid metabolism and reduced the lithocholic acid concentration. However, a high concentration of lithocholic acid can protect against intestinal colonization of K. pneumoniae by inhabiting the bacterial growth and adhesion to the host cell. Hence, regulating the balance of gut microbiota and intestinal bile acid metabolism may be a potential strategy for reducing the risk of K. pneumoniae infection and spread.
Collapse
Affiliation(s)
- Mengke Shen
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- Department of Pathogenic Biology and Immunology, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Huajie Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Meiqing Han
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Lin Su
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Xiaojian Cui
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Duan Li
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Liang Liu
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Chuansheng Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Fan Yang
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Liu S, Wang Z, Wang Z, Wu Q, Zhou J, Wang R, Han J, Su X. Comparison of the gut microbiota and metabolism in different regions of Red Swamp Crayfish ( Procambarus clarkii). Front Microbiol 2023; 14:1289634. [PMID: 38188569 PMCID: PMC10770849 DOI: 10.3389/fmicb.2023.1289634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background The gut microbiota is very important for maintaining the homeostasis and health of crustaceans. Many factors affect the gut microbiota of crustaceans, one of which is temperature. However, it is currently unclear how temperature affects the gut microbiota and metabolites of Procambarus clarkii. Methods Using metagenomic sequencing and gas chromatography-mass spectrometry (GC-MS) techniques, the gut microbiota and metabolites of P. clarkii from Hubei (HB), Jiangsu (JS), Shandong (SD), and Zhejiang (ZJ) in China were investigated. Results Under the impact of temperature, the gut microbiota and metabolites of P. clarkii exhibit a specific trend of change. The primary pathogenic bacteria affecting P. clarkii are Citrobacter, Enterobacterium, and Aeromonas, which are affected by temperature. Two metabolites, namely, sugars and amino acids, are regulated by temperature. Implication This study demonstrated that the gut microbiota and gut metabolites of P. clarkii were considerably affected by temperature. It provides a theoretical basis for the systematic study of P. clarkii and provides a basis for a healthy culture of P. clarkii.
Collapse
Affiliation(s)
- Songyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ze Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Qiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Rixin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Fu X, Zheng T, Li Z, Wu H. Metabolic profiling of Qi-Yu-San-Long decoction in rat feces by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry combined with a post-targeted screening strategy. Biomed Chromatogr 2023; 37:e5748. [PMID: 37750002 DOI: 10.1002/bmc.5748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 07/03/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
Research into traditional Chinese medicine metabolism in feces is one of the key avenues to understanding the fate of traditional Chinese medicines in vivo. In this study, we used ultraperformance liquid chromatography-quadrupole time-of-flight MS in combination with a post-targeted screening strategy to identify the prototype components and metabolites in rat feces after oral administration. Based on our group's previous research, the component database of Qi-Yu-San-Long decoction (QYSLD) was established. Prototype components were screened from the fecal samples based on summarized chromatographic and MS behaviors. According to the chemical structure characteristics of related compounds, the possible metabolic pathways were inferred, and the metabolites related to QYSLD were predicted. We extracted ion chromatograms by predicting the m/z values of metabolite excimer ions and identified related metabolites based on their retention time and fragmentation behavior. A total of 93 QYSLD-related xenobiotics were confirmed or tentatively identified in rat fecal samples, and the results indicated that the main metabolic pathways of QYSLD were hydrolysis, deglycosylation, oxidation, reduction, decarboxylation, methylation and acetylation. This study presents a rapid method for identifying the prototype components and metabolites, and offers valuable insights into the biotransformation profiling of QYSLD in rat feces.
Collapse
Affiliation(s)
- Xiaojie Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Zegeng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula and Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Cheney AM, Costello SM, Pinkham NV, Waldum A, Broadaway SC, Cotrina-Vidal M, Mergy M, Tripet B, Kominsky DJ, Grifka-Walk HM, Kaufmann H, Norcliffe-Kaufmann L, Peach JT, Bothner B, Lefcort F, Copié V, Walk ST. Gut microbiome dysbiosis drives metabolic dysfunction in Familial dysautonomia. Nat Commun 2023; 14:218. [PMID: 36639365 PMCID: PMC9839693 DOI: 10.1038/s41467-023-35787-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/18/2022] [Indexed: 01/15/2023] Open
Abstract
Familial dysautonomia (FD) is a rare genetic neurologic disorder caused by impaired neuronal development and progressive degeneration of both the peripheral and central nervous systems. FD is monogenic, with >99.4% of patients sharing an identical point mutation in the elongator acetyltransferase complex subunit 1 (ELP1) gene, providing a relatively simple genetic background in which to identify modifiable factors that influence pathology. Gastrointestinal symptoms and metabolic deficits are common among FD patients, which supports the hypothesis that the gut microbiome and metabolome are altered and dysfunctional compared to healthy individuals. Here we show significant differences in gut microbiome composition (16 S rRNA gene sequencing of stool samples) and NMR-based stool and serum metabolomes between a cohort of FD patients (~14% of patients worldwide) and their cohabitating, healthy relatives. We show that key observations in human subjects are recapitulated in a neuron-specific Elp1-deficient mouse model, and that cohousing mutant and littermate control mice ameliorates gut microbiome dysbiosis, improves deficits in gut transit, and reduces disease severity. Our results provide evidence that neurologic deficits in FD alter the structure and function of the gut microbiome, which shifts overall host metabolism to perpetuate further neurodegeneration.
Collapse
Affiliation(s)
- Alexandra M Cheney
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Stephanann M Costello
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Nicholas V Pinkham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Annie Waldum
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Susan C Broadaway
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Maria Cotrina-Vidal
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Marc Mergy
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Brian Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Douglas J Kominsky
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Heather M Grifka-Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | | | - Jesse T Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
5
|
The mechanisms underlying montelukast's neuropsychiatric effects - new insights from a combined metabolic and multiomics approach. Life Sci 2022; 310:121056. [DOI: 10.1016/j.lfs.2022.121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
6
|
Talavera Andújar B, Aurich D, Aho VTE, Singh RR, Cheng T, Zaslavsky L, Bolton EE, Mollenhauer B, Wilmes P, Schymanski EL. Studying the Parkinson's disease metabolome and exposome in biological samples through different analytical and cheminformatics approaches: a pilot study. Anal Bioanal Chem 2022; 414:7399-7419. [PMID: 35829770 PMCID: PMC9482909 DOI: 10.1007/s00216-022-04207-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease, with an increasing incidence in recent years due to the aging population. Genetic mutations alone only explain <10% of PD cases, while environmental factors, including small molecules, may play a significant role in PD. In the present work, 22 plasma (11 PD, 11 control) and 19 feces samples (10 PD, 9 control) were analyzed by non-target high-resolution mass spectrometry (NT-HRMS) coupled to two liquid chromatography (LC) methods (reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC)). A cheminformatics workflow was optimized using open software (MS-DIAL and patRoon) and open databases (all public MSP-formatted spectral libraries for MS-DIAL, PubChemLite for Exposomics, and the LITMINEDNEURO list for patRoon). Furthermore, five disease-specific databases and three suspect lists (on PD and related disorders) were developed, using PubChem functionality to identifying relevant unknown chemicals. The results showed that non-target screening with the larger databases generally provided better results compared with smaller suspect lists. However, two suspect screening approaches with patRoon were also good options to study specific chemicals in PD. The combination of chromatographic methods (RP and HILIC) as well as two ionization modes (positive and negative) enhanced the coverage of chemicals in the biological samples. While most metabolomics studies in PD have focused on blood and cerebrospinal fluid, we found a higher number of relevant features in feces, such as alanine betaine or nicotinamide, which can be directly metabolized by gut microbiota. This highlights the potential role of gut dysbiosis in PD development.
Collapse
Affiliation(s)
- Begoña Talavera Andújar
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, 4367, Belvaux, Luxembourg.
| | - Dagny Aurich
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, 4367, Belvaux, Luxembourg
| | - Velma T E Aho
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, 4367, Belvaux, Luxembourg
| | - Randolph R Singh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, 4367, Belvaux, Luxembourg.,IFREMER (Institut Français de Recherche Pour L'Exploitation de La Mer), Unité Contamination Chimique Des Ecosystèmes Marins, Nantes, France
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Leonid Zaslavsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, 4367, Belvaux, Luxembourg.,Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, 4367, Belvaux, Luxembourg.
| |
Collapse
|
7
|
Fecal 1H-NMR Metabolomics: A Comparison of Sample Preparation Methods for NMR and Novel in Silico Baseline Correction. Metabolites 2022; 12:metabo12020148. [PMID: 35208222 PMCID: PMC8875708 DOI: 10.3390/metabo12020148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Analysis of enteric microbiota function indirectly through the fecal metabolome has the potential to be an informative diagnostic tool. However, metabolomic analysis of feces is hampered by high concentrations of macromolecules such as proteins, fats, and fiber in samples. Three methods—ultrafiltration (UF), Bligh–Dyer (BD), and no extraction (samples added directly to buffer, vortexed, and centrifuged)—were tested on multiple rat (n = 10) and chicken (n = 8) fecal samples to ascertain whether the methods worked equally well across species and individuals. An in silico baseline correction method was evaluated to determine if an algorithm could produce spectra similar to those obtained via UF. For both rat and chicken feces, UF removed all macromolecules and produced no baseline distortion among samples. By contrast, the BD and no extraction methods did not remove all the macromolecules and produced baseline distortions. The application of in silico baseline correction produced spectra comparable to UF spectra. In the case of no extraction, more intense peaks were produced. This suggests that baseline correction may be a cost-effective method for metabolomic analyses of fecal samples and an alternative to UF. UF was the most versatile and efficient extraction method; however, BD and no extraction followed by baseline correction can produce comparable results.
Collapse
|
8
|
Shen W, Wu D, Qiu W, Yi X. Evaluation of freeze-drying for quantification of the microbiome and metabolome in neonatal faecal samples. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Cheng K, Brunius C, Fristedt R, Landberg R. An LC-QToF MS based method for untargeted metabolomics of human fecal samples. Metabolomics 2020; 16:46. [PMID: 32246267 PMCID: PMC7125068 DOI: 10.1007/s11306-020-01669-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Consensus in sample preparation for untargeted human fecal metabolomics is lacking. OBJECTIVES To obtain sample preparation with broad metabolite coverage for high-throughput LC-MS. METHODS Extraction solvent, solvent ratio and fresh frozen-vs-lyophilized samples were evaluated by metabolite feature quality. RESULTS Methanol at 5 mL per g wet feces provided a wide metabolite coverage with optimal balance between signal intensity and saturation for both fresh frozen and lyophilized samples. Lyophilization did not affect SCFA and is recommended because of convenience in normalizing to dry matter. CONCLUSION The suggested sample preparation is simple, efficient and suitable for large-scale human fecal metabolomics.
Collapse
Affiliation(s)
- Ken Cheng
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Carl Brunius
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Rikard Fristedt
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
10
|
Peng W, Huang J, Yang J, Zhang Z, Yu R, Fayyaz S, Zhang S, Qin YH. Integrated 16S rRNA Sequencing, Metagenomics, and Metabolomics to Characterize Gut Microbial Composition, Function, and Fecal Metabolic Phenotype in Non-obese Type 2 Diabetic Goto-Kakizaki Rats. Front Microbiol 2020; 10:3141. [PMID: 32038574 PMCID: PMC6984327 DOI: 10.3389/fmicb.2019.03141] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent endocrine diseases in the world. Recent studies have shown that dysbiosis of the gut microbiota may be an important contributor to T2DM pathogenesis. However, the mechanisms underlying the roles of the gut microbiome and fecal metabolome in T2DM have not been characterized. Recently, the Goto-Kakizaki (GK) rat model of T2DM was developed to study the clinical symptoms and characteristics of human T2DM. To further characterize T2DM pathogenesis, we combined multi-omics techniques, including 16S rRNA gene sequencing, metagenomic sequencing, and metabolomics, to analyze gut microbial compositions and functions, and further characterize fecal metabolomic profiles in GK rats. Our results showed that gut microbial compositions were significantly altered in GK rats, as evidenced by reduced microbial diversity, altered microbial taxa distribution, and alterations in the interaction network of the gut microbiome. Functional analysis based on the cluster of orthologous groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations suggested that 5 functional COG categories belonged to the metabolism cluster and 33 KEGG pathways related to metabolic pathways were significantly enriched in GK rats. Metabolomics profiling identified 53 significantly differentially abundant metabolites in GK rats, including lipids and lipid-like molecules. These lipids were enriched in the glycerophospholipid metabolic pathway. Moreover, functional correlation analysis showed that some altered gut microbiota families, such as Verrucomicrobiaceae and Bacteroidaceae, significantly correlated with alterations in fecal metabolites. Collectively, the results suggested that an altered gut microbiota is associated with T2DM pathogenesis.
Collapse
Affiliation(s)
- Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine Hunan, Changsha, China
| | - Jingjing Yang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Yu
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine Hunan, Changsha, China
| | - Sharmeen Fayyaz
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shuihan Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Hui Qin
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
11
|
Urine and fecal samples targeted metabolomics of carobs treated rats. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1114-1115:76-85. [PMID: 30933879 DOI: 10.1016/j.jchromb.2019.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/07/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Ceratonia siliqua, known as the carob, is considered to be of high nutritional value and of great economic significance due to its unique composition. The beneficial effects of carob against cancer, metabolic syndrome, diabetes, diarrhea, hyperlipidemia and gastro esophageal reflux disease are only a few of its therapeutic actions. Metabolomics-based analysis provides an ultimate tool, for the deciphering of nutritional intervention derived metabolic alterations. In the present study, 16 male Wistar rats were treated with carob powder for a 15-day period. Fecal and urine samples were collected at 5 time points (0, 1, 5, 10 and 15 days). By the applied HILIC-MS/MS method, 63 and 67 hydrophilic metabolites were detected in the fecal and urine samples, respectively, including amino acids, organic acids, sugars, vitamins and other endogenous compounds. A clear group separation based on fecal metabolome was observed after 1 day and 15 days treatment, while only a mild differentiation at day 1 was observed based on urine metabolome. Twenty-one fecal metabolites were responsible for the separation including amino acids and their derivatives, vitamins and organic acids. However, only 7 metabolites were altered in rat urine samples. Metabolic alterations in fecal samples could be attributed to physiological and biochemical adaptations derived from the nutritional intervention. Fecal targeted metabolomics were proven to be suitable for uplifting and highlighting such alterations.
Collapse
|
12
|
Xu J, Zhang QF, Zheng J, Yuan BF, Feng YQ. Mass spectrometry-based fecal metabolome analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Maki KA, Diallo AF, Lockwood MB, Franks AT, Green SJ, Joseph PV. Considerations When Designing a Microbiome Study: Implications for Nursing Science. Biol Res Nurs 2019; 21:125-141. [PMID: 30409024 PMCID: PMC6700895 DOI: 10.1177/1099800418811639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nurse scientists play an important role in studying complex relationships among human genetics, environmental factors, and the microbiome, all of which can contribute to human health and disease. Therefore, it is essential that they have the tools necessary to execute a successful microbiome research study. The purpose of this article is to highlight important methodological factors for nurse scientists to consider when designing a microbiome study. In addition to considering factors that influence host-associated microbiomes (i.e., microorganisms associated with organisms such as humans, mice, and rats), this manuscript highlights study designs and methods for microbiome analysis. Exemplars are presented from nurse scientists who have incorporated microbiome methods into their program of research. This review is intended to be a resource to guide nursing-focused microbiome research and highlights how study of the microbiome can be incorporated to answer research questions.
Collapse
Affiliation(s)
- Katherine A. Maki
- Department of Biobehavioral Health Science, College of Nursing,
University of Illinois at Chicago, Chicago, IL, USA
| | - Ana F. Diallo
- Institute of Inclusion, Inquiry and Innovation, Richmond Health and
Wellness Clinics, Virginia Commonwealth University School of Nursing, Richmond, VA,
USA
| | - Mark B. Lockwood
- Department of Biobehavioral Health Science, College of Nursing,
University of Illinois at Chicago, Chicago, IL, USA
| | - Alexis T. Franks
- Sensory Science and Metabolism Unit, Biobehavioral Branch, Division
of Intramural Research, National Institute of Nursing Research, National Institutes
of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Stefan J. Green
- Research Resources Center, University of Illinois at Chicago,
Chicago, IL, USA
| | - Paule V. Joseph
- Sensory Science and Metabolism Unit, Biobehavioral Branch, Division
of Intramural Research, National Institute of Nursing Research, National Institutes
of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|