1
|
Da Silva A, Dort J, Orfi Z, Pan X, Huang S, Kho I, Heckel E, Muscarnera G, van Vliet PP, Sturiale L, Messina A, Romeo DA, van Karnebeek CD, Wen XY, Hinek A, Molina T, Andelfinger G, Ellezam B, Yamanaka Y, Olivos HJ, Morales CR, Joyal JS, Lefeber DJ, Garozzo D, Dumont NA, Pshezhetsky AV. N-acetylneuraminate pyruvate lyase controls sialylation of muscle glycoproteins essential for muscle regeneration and function. SCIENCE ADVANCES 2023; 9:eade6308. [PMID: 37390204 PMCID: PMC10313170 DOI: 10.1126/sciadv.ade6308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/25/2023] [Indexed: 07/02/2023]
Abstract
Deleterious variants in N-acetylneuraminate pyruvate lyase (NPL) cause skeletal myopathy and cardiac edema in humans and zebrafish, but its physiological role remains unknown. We report generation of mouse models of the disease: NplR63C, carrying the human p.Arg63Cys variant, and Npldel116 with a 116-bp exonic deletion. In both strains, NPL deficiency causes drastic increase in free sialic acid levels, reduction of skeletal muscle force and endurance, slower healing and smaller size of newly formed myofibers after cardiotoxin-induced muscle injury, increased glycolysis, partially impaired mitochondrial function, and aberrant sialylation of dystroglycan and mitochondrial LRP130 protein. NPL-catalyzed degradation of sialic acid in the muscle increases after fasting and injury and in human patient and mouse models with genetic muscle dystrophy, demonstrating that NPL is essential for muscle function and regeneration and serves as a general marker of muscle damage. Oral administration of N-acetylmannosamine rescues skeletal myopathy, as well as mitochondrial and structural abnormalities in NplR63C mice, suggesting a potential treatment for human patients.
Collapse
Affiliation(s)
- Afitz Da Silva
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Junio Dort
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Zakaria Orfi
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Xuefang Pan
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Sjanie Huang
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen 6500, Netherlands
| | - Ikhui Kho
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Emilie Heckel
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Giacomo Muscarnera
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Patrick Piet van Vliet
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Luisa Sturiale
- CNR, Institute of Polymers, Composites and Biomaterials, Catania, Italy
| | - Angela Messina
- CNR, Institute of Polymers, Composites and Biomaterials, Catania, Italy
| | | | - Clara D.M. van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery and ZebraPeutics (Guangdong) Ltd., HengQin District, Zhuhai, China
| | - Aleksander Hinek
- Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Thomas Molina
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Gregor Andelfinger
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Benjamin Ellezam
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen 6500, Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboudumc Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500, Netherlands
| | - Domenico Garozzo
- CNR, Institute of Polymers, Composites and Biomaterials, Catania, Italy
| | - Nicolas A. Dumont
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- School of Rehabilitation, University of Montreal, Montreal, QC, Canada
| | - Alexey V. Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Peng W, Kobeissy F, Mondello S, Barsa C, Mechref Y. MS-based glycomics: An analytical tool to assess nervous system diseases. Front Neurosci 2022; 16:1000179. [PMID: 36408389 PMCID: PMC9671362 DOI: 10.3389/fnins.2022.1000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Neurological diseases affect millions of peopleochemistryorldwide and are continuously increasing due to the globe's aging population. Such diseases affect the nervous system and are characterized by a progressive decline in brain function and progressive cognitive impairment, decreasing the quality of life for those with the disease as well as for their families and loved ones. The increased burden of nervous system diseases demands a deeper insight into the biomolecular mechanisms at work during disease development in order to improve clinical diagnosis and drug design. Recently, evidence has related glycosylation to nervous system diseases. Glycosylation is a vital post-translational modification that mediates many biological functions, and aberrant glycosylation has been associated with a variety of diseases. Thus, the investigation of glycosylation in neurological diseases could provide novel biomarkers and information for disease pathology. During the last decades, many techniques have been developed for facilitation of reliable and efficient glycomic analysis. Among these, mass spectrometry (MS) is considered the most powerful tool for glycan analysis due to its high resolution, high sensitivity, and the ability to acquire adequate structural information for glycan identification. Along with MS, a variety of approaches and strategies are employed to enhance the MS-based identification and quantitation of glycans in neurological samples. Here, we review the advanced glycomic tools used in nervous system disease studies, including separation techniques prior to MS, fragmentation techniques in MS, and corresponding strategies. The glycan markers in common clinical nervous system diseases discovered by utilizing such MS-based glycomic tools are also summarized and discussed.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chloe Barsa
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
4
|
Ziburová J, Nemčovič M, Šesták S, Bellová J, Pakanová Z, Siváková B, Šalingová A, Šebová C, Ostrožlíková M, Lekka DE, Brucknerová J, Brucknerová I, Skokňová M, Mc Cullough A, Hrčková G, Hlavatá A, Bzdúch V, Mucha J, Baráth P. A novel homozygous mutation in the human ALG12 gene results in an aberrant profile of oligomannose N-glycans in patient's serum. Am J Med Genet A 2021; 185:3494-3501. [PMID: 34467644 PMCID: PMC9291070 DOI: 10.1002/ajmg.a.62474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
Abstract
Congenital disorder of glycosylation type Ig (ALG12-CDG) is a rare inherited metabolic disease caused by a defect in alpha-mannosyltransferase 8, encoded by the ALG12 gene (22q13.33). To date, only 15 patients have been diagnosed with ALG12-CDG globally. Due to a newborn Slovak patient's clinical and biochemical abnormalities, the isoelectric focusing of transferrin was performed with observed significant hypoglycosylation typical of CDG I. Furthermore, analysis of neutral serum N-glycans by mass spectrometry revealed the accumulation of GlcNAc2Man5-7 and decreased levels of GlcNAc2Man8-9, which indicated impaired ALG12 enzymatic activity. Genetic analysis of the coding regions of the ALG12 gene of the patient revealed a novel homozygous substitution mutation c.1439T>C p.(Leu480Pro) within Exon 10. Furthermore, both of the patient's parents and his twin sister were asymptomatic heterozygous carriers of the variant. This comprehensive genomic and glycomic approach led to the confirmation of the ALG12 pathogenic variant responsible for the clinical manifestation of the disorder in the patient described.
Collapse
Affiliation(s)
- Jana Ziburová
- Department of Glycobiology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovakia.,Department of Clinical Genetics, St. Elizabeth Cancer Institute, Bratislava, Slovakia
| | - Marek Nemčovič
- Department of Glycobiology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovakia
| | - Sergej Šesták
- Department of Glycobiology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovakia
| | - Jana Bellová
- Department of Glycobiology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovakia
| | - Zuzana Pakanová
- Department of Glycobiology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovakia
| | - Barbara Siváková
- Department of Glycobiology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovakia
| | - Anna Šalingová
- Department of Laboratory Medicine, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Claudia Šebová
- Department of Laboratory Medicine, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Mária Ostrožlíková
- Department of Laboratory Medicine, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Dimitra-Evanthia Lekka
- Department of Neonatology and Intensive Medicine, National Institute of Children's Diseases, Bratislava, Slovakia.,Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jana Brucknerová
- Department of Neonatology and Intensive Medicine, National Institute of Children's Diseases, Bratislava, Slovakia.,Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ingrid Brucknerová
- Department of Neonatology and Intensive Medicine, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Martina Skokňová
- Department of Neonatology and Intensive Medicine, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Alexandra Mc Cullough
- Department of Neonatology and Intensive Medicine, National Institute of Children's Diseases, Bratislava, Slovakia
| | - Gabriela Hrčková
- Faculty of Medicine, Department of Paediatrics, National Institute of Children's Diseases, Comenius University, Bratislava, Slovakia
| | - Anna Hlavatá
- Faculty of Medicine, Department of Paediatrics, National Institute of Children's Diseases, Comenius University, Bratislava, Slovakia
| | - Vladimír Bzdúch
- Faculty of Medicine, Department of Paediatrics, National Institute of Children's Diseases, Comenius University, Bratislava, Slovakia
| | - Ján Mucha
- Department of Glycobiology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovakia
| | - Peter Baráth
- Department of Glycobiology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovakia
| |
Collapse
|
5
|
Messina A, Palmigiano A, Tosto C, Romeo DA, Sturiale L, Garozzo D, Leonardi A. Tear N-glycomics in vernal and atopic keratoconjunctivitis. Allergy 2021; 76:2500-2509. [PMID: 33583051 DOI: 10.1111/all.14775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Tear fluid N-Glycome from patients affected with vernal (VKC) and atopic keratoconjunctivitis (AKC) was investigated to identify specific changes in tears and to recognize possible glyco-biomarkers. METHODS The analysis of the N-glycans was performed using matrix-assisted laser desorption ionization mass spectrometry on single tear samples. Tears from control normal subjects (CTRL), VKC and AKC patients were processed and treated with peptide N-glycosidase F (PNGase F) to deglycosylate N-glycoproteins. Released N-glycans were purified, permethylated, and analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and tandem mass spectrometry (MALDI-TOF MS and MALDI-TOF MS/MS). RESULTS More than 150 complex N-glycans, including highly fucosylated biantennary, triantennary, tetra-antennary, and bisecting species, were observed in our spectra. Three distinct patterns for CTRL, VKC, and AKC patients were identified in terms of relative intensities for some N-glycans structures. Major variations involved bisecting and hyperfucosylated glycoforms. The most intense ions were associated with species at m/z 1907.0 (asialo, agalacto, bisected, biantennary structure-NGA2B) in CTRL MS profiles, at m/z 2605.3 and 2966.5 in VKC, and at m/z 2792.4 in AKC corresponding to a well-known biantennary, disialylated N-glycan. Several peaks were associated with structures bearing one or two Lewis X epitopes. Structures were confirmed by MS/MS analysis. Quantitative differences among the three groups were statistically significant. CONCLUSIONS Tear MS profiles are rich in specific glycoforms, particularly those with a high fucosylation degree, indicating both core and peripheral decoration. Tear N-glycome analysis provided important information for a better comprehension of VKC and AKC alterations at the molecular level.
Collapse
Affiliation(s)
- Angela Messina
- Consiglio Nazionale delle Ricerche (CNR) Istituto per i Polimeri Compositi e Biomateriali (IPCB) Catania Catania Italy
| | - Angelo Palmigiano
- Consiglio Nazionale delle Ricerche (CNR) Istituto per i Polimeri Compositi e Biomateriali (IPCB) Catania Catania Italy
| | - Claudia Tosto
- Consiglio Nazionale delle Ricerche (CNR) Istituto per i Polimeri Compositi e Biomateriali (IPCB) Catania Catania Italy
| | - Donata Agata Romeo
- Consiglio Nazionale delle Ricerche (CNR) Istituto per i Polimeri Compositi e Biomateriali (IPCB) Catania Catania Italy
| | - Luisa Sturiale
- Consiglio Nazionale delle Ricerche (CNR) Istituto per i Polimeri Compositi e Biomateriali (IPCB) Catania Catania Italy
| | - Domenico Garozzo
- Consiglio Nazionale delle Ricerche (CNR) Istituto per i Polimeri Compositi e Biomateriali (IPCB) Catania Catania Italy
| | - Andrea Leonardi
- Department of Neuroscience, Ophthalmology Unit University of Padua Padua Italy
| |
Collapse
|
6
|
N-Glycomics of Human Erythrocytes. Int J Mol Sci 2021; 22:ijms22158063. [PMID: 34360826 PMCID: PMC8347577 DOI: 10.3390/ijms22158063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Glycosylation is a complex post-translational modification that conveys functional diversity to glycoconjugates. Cell surface glycosylation mediates several biological activities such as induction of the intracellular signaling pathway and pathogen recognition. Red blood cell (RBC) membrane N-glycans determine blood type and influence cell lifespan. Although several proteomic studies have been carried out, the glycosylation of RBC membrane proteins has not been systematically investigated. This work aims at exploring the human RBC N-glycome by high-sensitivity MALDI-MS techniques to outline a fingerprint of RBC N-glycans. To this purpose, the MALDI-TOF spectra of healthy subjects harboring different blood groups were acquired. Results showed the predominant occurrence of neutral and sialylated complex N-glycans with bisected N-acetylglucosamine and core- and/or antennary fucosylation. In the higher mass region, these species presented with multiple N-acetyllactosamine repeating units. Amongst the detected glycoforms, the presence of glycans bearing ABO(H) antigens allowed us to define a distinctive spectrum for each blood group. For the first time, advanced glycomic techniques have been applied to a comprehensive exploration of human RBC N-glycosylation, providing a new tool for the early detection of distinct glycome changes associated with disease conditions as well as for understanding the molecular recognition of pathogens.
Collapse
|
7
|
Papazoglu GM, Cubilla M, Pereyra M, de Kremer RD, Pérez B, Sturiale L, Asteggiano CG. Mass spectrometry glycophenotype characterization of ALG2-CDG in Argentinean patients with a new genetic variant in homozygosis. Glycoconj J 2021; 38:191-200. [PMID: 33644825 DOI: 10.1007/s10719-021-09976-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Human ALG2 encodes an α 1,3mannosyltransferase that catalyzes the first steps in the synthesis of N-glycans in the endoplasmic reticulum. Variants in ALG2cause a congenital disorder of glycosylation (CDG) known as ALG2-CDG. Up to date, nine ALG2-CDG patients have been reported worldwide. ALG2-CDG is a rare autosomal recessive inherited disorder characterized by neurological involvement, convulsive syndrome of unknown origin, axial hypotonia, and mental and motor regression. In this study, we used MALDI-TOF MS to define both total serum protein and transferrin (Tf) N-glycan phenotypes in three ALG2-CDG patients carrying a c.752G > T, p.Arg251Leu ALG2 missense variant in homozygous state, as determined by exome sequencing. Comparing it to control samples, we have observed Tf under-occupancy of glycosylation site(s) typical of a defective N-glycan assembly and the occurrence of oligomannose and hybrid type N-glycans. Moreover, we have observed a slight oligomannose accumulation in total serum glyco-profiles. The increased heterogeneity of serum N-glycome in the studied patients suggests a marginal disarrangement of the glycan processing in ALG2-CDG. Previous studies reported on slightly increased concentrations of abnormal serum N-glycans in CDG-I due to defects in the mannosylation steps of dolichol-linked oligosaccharide biosynthesis. This preliminary work aims at considering serum N-glycan accumulation of high mannosylated glycoforms, such as oligomannose and hybrid type N-glycans, as potential diagnostic signals for ALG2-CDG patients.
Collapse
Affiliation(s)
- Gabriela Magali Papazoglu
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Hospital de Niños de la Santísima Trinidad, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, X5014AKN, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Marisa Cubilla
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Hospital de Niños de la Santísima Trinidad, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, X5014AKN, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Marcela Pereyra
- Servicio de Crecimiento y Desarrollo, Hospital Pediátrico HumbertoNotti, Mendoza, Argentina
| | - Raquel Dodelson de Kremer
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Hospital de Niños de la Santísima Trinidad, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, X5014AKN, Córdoba, Argentina
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular Severo Ochoa CSIC-UAM, CIBERER, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luisa Sturiale
- CNR, Institute for Polymers, Composites and Biomaterials, IPCB, Catania, Italy
| | - Carla Gabriela Asteggiano
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Hospital de Niños de la Santísima Trinidad, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, X5014AKN, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
- Facultad de Ciencias de la Salud, Carrera Medicina, Universidad Católica de Córdoba (UCC), Jacinto Ríos 571 (X5004ASK), B° General Paz, Córdoba, Argentina.
| |
Collapse
|
8
|
Stratilová B, Šesták S, Mravec J, Garajová S, Pakanová Z, Vadinová K, Kučerová D, Kozmon S, Schwerdt JG, Shirley N, Stratilová E, Hrmova M. Another building block in the plant cell wall: Barley xyloglucan xyloglucosyl transferases link covalently xyloglucan and anionic oligosaccharides derived from pectin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:752-767. [PMID: 32799357 DOI: 10.1111/tpj.14964] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 05/27/2023]
Abstract
We report on the homo- and hetero-transglycosylation activities of the HvXET3 and HvXET4 xyloglucan xyloglucosyl transferases (XET; EC 2.4.1.207) from barley (Hordeum vulgare L.), and the visualisation of these activities in young barley roots using Alexa Fluor 488-labelled oligosaccharides. We discover that these isozymes catalyse the transglycosylation reactions with the chemically defined donor and acceptor substrates, specifically with the xyloglucan donor and the penta-galacturonide [α(1-4)GalAp]5 acceptor - the homogalacturonan (pectin) fragment. This activity is supported by 3D molecular models of HvXET3 and HvXET4 with the docked XXXG donor and [α(1-4)GalAp]5 acceptor substrates at the -4 to +5 subsites in the active sites. Comparative sequence analyses of barley isoforms and seed-localised TmXET6.3 from nasturtium (Tropaeolum majus L.) permitted the engineering of mutants of TmXET6.3 that could catalyse the hetero-transglycosylation reaction with the xyloglucan/[α(1-4)GalAp]5 substrate pair, while wild-type TmXET6.3 lacked this activity. Expression data obtained by real-time quantitative polymerase chain reaction of HvXET transcripts and a clustered heatmap of expression profiles of the gene family revealed that HvXET3 and HvXET6 co-expressed but did not share the monophyletic origin. Conversely, HvXET3 and HvXET4 shared this relationship, when we examined the evolutionary history of 419 glycoside hydrolase 16 family members, spanning monocots, eudicots and a basal Angiosperm. The discovered hetero-transglycosylation activity in HvXET3 and HvXET4 with the xyloglucan/[α(1-4)GalAp]5 substrate pair is discussed against the background of roles of xyloglucan-pectin heteropolymers and how they may participate in spatial patterns of cell wall formation and re-modelling, and affect the structural features of walls.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-84538, Slovakia
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Bratislava, SK-842 15, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-84538, Slovakia
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg-C, 1871, Denmark
| | - Soňa Garajová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-84538, Slovakia
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Zuzana Pakanová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-84538, Slovakia
| | - Kristína Vadinová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-84538, Slovakia
| | - Danica Kučerová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-84538, Slovakia
| | - Stanislav Kozmon
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-84538, Slovakia
| | - Julian G Schwerdt
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Neil Shirley
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Eva Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-84538, Slovakia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China
| |
Collapse
|
9
|
Pažitná L, Nemčovič M, Pakanová Z, Baráth P, Aliev T, Dolgikh D, Argentova V, Katrlík J. Influence of media composition on recombinant monoclonal IgA1 glycosylation analysed by lectin-based protein microarray and MALDI-MS. J Biotechnol 2020; 314-315:34-40. [PMID: 32298669 PMCID: PMC7194684 DOI: 10.1016/j.jbiotec.2020.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Glycosylation of therapeutic glycoproteins significantly affects their physico-chemical properties, bioactivity and immunogenicity. The determination of glycan composition is highly important regarding their development and production. Therefore, there is a demand for analytical techniques enabling rapid and reliable glycoprofiling of therapeutic proteins. For the investigation of changes in glycan structures, we have employed two platforms: lectin-based protein microarray, and MALDI-MS. In lectin-based microarray analysis, the samples of IgA were printed on the microarray slide, incubated with the set of lectins with various specificity and evaluation of changes in glycosylation was based on differences in reactivity of samples with lectins. MALDI-MS was used for N-glycan analysis of IgA1 samples. IgAs are effective as therapeutic agents in defense against viruses that use sialic acid as a receptor. Dimeric IgA1 antibodies were produced by stable cell line IgA1/2G9 on the basal medium at different conditions (different supplementation and feeding) and we also evaluated the effect of different conditions on lactate production, which correlates with IgA productivity. Decrease of lactate levels was observed during supplementation with succinic acid, asparagine, or with mannose feeding. We found by lectin-based microarray analysis that the metabolic shift from glutamine to asparagine or feeding with glucose caused increase of high mannose type glycans what was confirmed also by MALDI-MS. Among other changes in IgA glycosylation determined by lectin-based protein microarray were, for example, reduced galactosylation after supplementation with succinic acid and increase of both sialylation and galactosylation after supplementation with glutamine and feeding with mannose. The elucidation of mechanism of determined changes requires further investigation, but the described analytical approach represent effective platform for determination, screening and evaluation of glycosylation of therapeutic proteins.
Collapse
Affiliation(s)
- Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Nemčovič
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Teimur Aliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Dolgikh
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victoria Argentova
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
10
|
Cho BG, Veillon L, Mechref Y. N-Glycan Profile of Cerebrospinal Fluids from Alzheimer's Disease Patients Using Liquid Chromatography with Mass Spectrometry. J Proteome Res 2019; 18:3770-3779. [PMID: 31437391 PMCID: PMC7027932 DOI: 10.1021/acs.jproteome.9b00504] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosylation, an essential post-translational protein modification, is known to be altered in a variety of diseases, including neurodegenerative diseases such as Alzheimer's disease (AD), which is one of the most common neurodegenerative disorders that results in cognitive and memory impairments. To investigate the progression of such a condition, cerebrospinal fluid (CSF), a unique biofluid that may possess significant biochemical and neurochemical changes due to the disease, is utilized. However, due to the low concentration of proteins in CSF, a large volume of the biofluid is often required to comprehensively characterize the glycome in CSF. In this work, a glycomic study of CSF was performed using as little as 10 μL of CSF. This approach was executed with permethylation of released N-glycans with minimal sample cleanup, in conjunction with an online purification system attached to liquid chromatography and a high-resolution mass spectrometer. This technique was then applied to clinical samples. Preliminary data suggest that fucosylated and bisecting GlcNAc structures were higher in abundances in females with AD, while both females and males exhibited lower abundances of high-mannose structures. Although there seems to be statistically significant differences between disease state and disease-free CSF, due to the lack of number of samples, further validation study should be conducted.
Collapse
Affiliation(s)
- Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
11
|
Spampinato SF, Merlo S, Fagone E, Fruciano M, Barbagallo C, Kanda T, Sano Y, Purrello M, Vancheri C, Ragusa M, Sortino MA. Astrocytes Modify Migration of PBMCs Induced by β-Amyloid in a Blood-Brain Barrier in vitro Model. Front Cell Neurosci 2019; 13:337. [PMID: 31396056 PMCID: PMC6664149 DOI: 10.3389/fncel.2019.00337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Background The brain is protected by the blood-brain barrier (BBB), constituted by endothelial cells supported by pericytes and astrocytes. In Alzheimer’s disease a dysregulation of the BBB occurs since the early phases of the disease leading to an increased access of solutes and immune cells that can participate to the central inflammatory response. Here we investigated whether astrocytes may influence endothelial-leukocytes interaction in the presence of amyloid-β (Aβ). Methods We used an in vitro BBB model, where endothelial cells, cultured alone or with astrocytes were exposed for 5 h to Aβ, both under resting or inflammatory conditions (TNFα and IFNγ), to evaluate endothelial barrier properties, as well as transendothelial migration of peripheral blood mononuclear cells (PBMCs). Results In the co-culture model, barrier permeability to solutes was increased by all treatments, but migration was only observed in inflammatory conditions and was prevented by Aβ treatment. On the contrary, in endothelial monocultures, Aβ induced leukocytes migration under resting conditions and did not modify that induced by inflammatory cytokines. In endothelial astrocyte co-cultures, a low molecular weight (MW) isoform of the adhesion molecule ICAM-1, important to allow interaction with PBMCs, was increased after 5 h exposure to inflammatory cytokines, an effect that was prevented by Aβ. This modulation by Aβ was not observed in endothelial monocultures. In addition, endothelial expression of β-1,4-N-acetylglucosaminyltransferase III (Gnt-III), responsible for the formation of the low MW ICAM-1 isoform, was enhanced in inflammatory conditions, but negatively modulated by Aβ only in the co-culture model. miR-200b, increased in astrocytes following Aβ treatment and may represent one of the factors involved in the control of Gnt-III expression. Conclusion These data point out that, at least in the early phases of Aβ exposure, astrocytes play a role in the modulation of leukocytes migration through the endothelial layer.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sara Merlo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Evelina Fagone
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mary Fruciano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University, Yamaguchi, Japan
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University, Yamaguchi, Japan
| | - Michele Purrello
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute - IRCCS, Troina, Italy
| | - Maria Angela Sortino
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, Urbani A. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteomics 2018; 15:683-696. [PMID: 30058389 DOI: 10.1080/14789450.2018.1505510] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The development of precision medicine requires advanced technologies to address the multifactorial disease stratification and to support personalized treatments. Among omics techniques, proteomics based on Mass Spectrometry (MS) is becoming increasingly relevant in clinical practice allowing a phenotypic characterization of the dynamic functional status of the organism. From this perspective, Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) MS is a suitable platform for providing a high-throughput support to clinics. Areas covered: This review aims to provide an updated overview of MALDI-TOF MS applications in clinical proteomics. The most relevant features of this analysis have been discussed, highlighting both pre-analytical and analytical factors that are crucial in proteomics studies. Particular emphasis is placed on biofluids proteomics for biomarkers discovery and on recent progresses in clinical microbiology, drug monitoring, and minimal residual disease (MRD). Expert commentary: Despite some analytical limitations, the latest technological advances together with the easiness of use, the low time and low cost consuming and the high throughput are making MALDI-TOF MS instruments very attractive for the clinical practice. These features offer a significant potential for the routine of the clinical laboratory and ultimately for personalized medicine.
Collapse
Affiliation(s)
- Viviana Greco
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| | - Cristian Piras
- c Dipartimento di Medicina Veterinaria , Università degli studi di Milano , Milano , Italy
| | - Luisa Pieroni
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy
| | - Maurizio Ronci
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy.,e Department of Medical, Oral and Biotechnological Sciences , University "G. D'Annunzio" of Chieti-Pescara , Chieti , Italy
| | - Lorenza Putignani
- f Unit of Parasitology Bambino Gesù Children's Hospital , IRCCS , Rome , Italy.,g Unit of Human Microbiome , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Paola Roncada
- h Dipartimento di Scienze della Salute , Università degli studi "Magna Græcia" di Catanzaro , Catanzaro , Italy
| | - Andrea Urbani
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| |
Collapse
|