1
|
A Non-Hazardous Deparaffinization Protocol Enables Quantitative Proteomics of Core Needle Biopsy-Sized Formalin-Fixed and Paraffin-Embedded (FFPE) Tissue Specimens. Int J Mol Sci 2022; 23:ijms23084443. [PMID: 35457260 PMCID: PMC9031572 DOI: 10.3390/ijms23084443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Most human tumor tissues that are obtained for pathology and diagnostic purposes are formalin-fixed and paraffin-embedded (FFPE). To perform quantitative proteomics of FFPE samples, paraffin has to be removed and formalin-induced crosslinks have to be reversed prior to proteolytic digestion. A central component of almost all deparaffinization protocols is xylene, a toxic and highly flammable solvent that has been reported to negatively affect protein extraction and quantitative proteome analysis. Here, we present a 'green' xylene-free protocol for accelerated sample preparation of FFPE tissues based on paraffin-removal with hot water. Combined with tissue homogenization using disposable micropestles and a modified protein aggregation capture (PAC) digestion protocol, our workflow enables streamlined and reproducible quantitative proteomic profiling of FFPE tissue. Label-free quantitation of FFPE cores from human ductal breast carcinoma in situ (DCIS) xenografts with a volume of only 0.79 mm3 showed a high correlation between replicates (r2 = 0.992) with a median %CV of 16.9%. Importantly, this small volume is already compatible with tissue micro array (TMA) cores and core needle biopsies, while our results and its ease-of-use indicate that further downsizing is feasible. Finally, our FFPE workflow does not require costly equipment and can be established in every standard clinical laboratory.
Collapse
|
2
|
Yi H, Liao ZW, Chen JJ, Shi XY, Chen GL, Wu GT, Zhou DY, Zhou GQ, Huang JY, Lian L, Yu ZY, He SB. Genome variation in colorectal cancer patient with liver metastasis measured by whole-exome sequencing. J Gastrointest Oncol 2021; 12:507-515. [PMID: 34012644 DOI: 10.21037/jgo-21-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Liver metastasis of colorectal cancer (CRC) is an important cause of death from CRC, but its molecular mechanism is still unclear. In recent years, whole-exome sequencing has played an increasingly important role in the study of the occurrence and development of diseases, especially malignant tumors. Its high throughput and low cost advantages enable researchers to explore the pathogenic genes of diseases, and screen potential molecular markers and therapeutic targets from the level of genomics. Methods This study collected the primary tumor tissues, matched paracancerous, normal tissues, and liver metastases of 4 CRC patients admitted to the Department of General Surgery of the First Affiliated Hospital of Soochow University, and performed high-depth whole-exome sequencing, with the sequencing depth of each sample reaching 123× on average, then filtered the sequencing data, compared them, and analyzed the bioinformatics data. Results we found 8,565 single nucleotide variants (SNV) and 429 insertions/deletions (InDel) in the primary and hepatic lesion tissues, and the genes with the highest mutation frequency were titin (TTN), obscurin (OBSCN), and homeodomain-interacting protein kinase 2 (HIPK2). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the mutant genes was conducted, and it was found that the mutant genes were mainly concentrated in the cells, cell parts, and cellular process of GO. The results of KEGG pathway analysis showed that mutations were mainly distributed in circadian entrainment, insulin secretion, and glutamatergic synapse. Further, we identified 723 SNV and Indel genes with high frequency mutations including TTN, OBSCN, and hydrocephalus-inducing protein homolog (HYDIN) across all tissues of liver metastases. The GO analysis showed that the mutated genes in liver metastatic tissues were mainly concentrated in cell, cell part, and cellular process. The KEGG pathway analysis showed that high frequency mutation genes were focused on gastric acid secretion, bile secretion, and melanogenesis. Conclusions This study found some candidate genes related to the occurrence of CRC and liver metastasis through whole-exome sequencing of relevant tissues in CRC patients with liver metastasis, which is expected to provide new markers and therapeutic targets for such patients.
Collapse
Affiliation(s)
- Hui Yi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of General Surgery, Renhe Hospital, Baoshan District, Shanghai, China
| | - Zhi-Wei Liao
- Department of General Surgery, Renhe Hospital, Baoshan District, Shanghai, China
| | - Jun-Jie Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin-Yu Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guo-Liang Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guan-Ting Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Di-Yuan Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guo-Qiang Zhou
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Jin-Yu Huang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lian Lian
- Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Zheng-Yuan Yu
- Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song-Bing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Gallardo-Gómez M, De Chiara L, Álvarez-Chaver P, Cubiella J. Colorectal cancer screening and diagnosis: omics-based technologies for development of a non-invasive blood-based method. Expert Rev Anticancer Ther 2021; 21:723-738. [PMID: 33507120 DOI: 10.1080/14737140.2021.1882858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Colorectal cancer (CRC) is one of the most important health problems in the Western world. In order to reduce the burden of the disease, two strategies are proposed: screening and prompt detection in symptomatic patients. Although diagnosis and prevention are mainly based on colonoscopy, fecal hemoglobin detection has been widely implemented as a noninvasive strategy. Various studies aiming to discover blood-based biomarkers have recently emerged.Areas covered: The burgeoning omics field provides diverse high-throughput approaches for CRC blood-based biomarker discovery. In this review, we appraise the most robust and commonly used technologies within the fields of genomics, transcriptomics, epigenomics, proteomics, and metabolomics, together with their targeted validation approaches. We summarize the transference process from the discovery phase until clinical translation. Finally, we review the best candidate biomarkers and their potential clinical applicability.Expert opinion: Some available biomarkers are promising, especially in the field of epigenomics: DNA methylation and microRNA. Transference requires the joint collaboration of basic researchers, intellectual property experts, technology transfer officers and clinicians. Blood-based biomarkers will be selected not only based on their diagnostic accuracy and cost but also on their reliability, applicability to clinical analysis laboratories and their acceptance by the population.
Collapse
Affiliation(s)
- María Gallardo-Gómez
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Loretta De Chiara
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Paula Álvarez-Chaver
- Proteomics Unit, Service of Structural Determination, Proteomics and Genomics, Center for Scientific and Technological Research Support (CACTI), University of Vigo, Vigo, Spain
| | - Joaquin Cubiella
- Department of Gastroenterology, Hospital Universitario De Ourense, Ourense, Spain.,Instituto De Investigación Sanitaria Galicia Sur, Ourense, Spain.,Centro De Investigación Biomédica En Red Enfermedades Hepáticas Y Digestivas, Ourense, Spain
| |
Collapse
|
4
|
Challenges and Opportunities in Clinical Applications of Blood-Based Proteomics in Cancer. Cancers (Basel) 2020; 12:cancers12092428. [PMID: 32867043 PMCID: PMC7564506 DOI: 10.3390/cancers12092428] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The traditional approach in identifying cancer related protein biomarkers has focused on evaluation of a single peptide/protein in tissue or circulation. At best, this approach has had limited success for clinical applications, since multiple pathological tumor pathways may be involved during initiation or progression of cancer which diminishes the significance of a single candidate protein/peptide. Emerging sensitive proteomic based technologies like liquid chromatography mass spectrometry (LC-MS)-based quantitative proteomics can provide a platform for evaluating serial serum or plasma samples to interrogate secreted products of tumor–host interactions, thereby revealing a more “complete” repertoire of biological variables encompassing heterogeneous tumor biology. However, several challenges need to be met for successful application of serum/plasma based proteomics. These include uniform pre-analyte processing of specimens, sensitive and specific proteomic analytical platforms and adequate attention to study design during discovery phase followed by validation of discovery-level signatures for prognostic, predictive, and diagnostic cancer biomarker applications. Abstract Blood is a readily accessible biofluid containing a plethora of important proteins, nucleic acids, and metabolites that can be used as clinical diagnostic tools in diseases, including cancer. Like the on-going efforts for cancer biomarker discovery using the liquid biopsy detection of circulating cell-free and cell-based tumor nucleic acids, the circulatory proteome has been underexplored for clinical cancer biomarker applications. A comprehensive proteome analysis of human serum/plasma with high-quality data and compelling interpretation can potentially provide opportunities for understanding disease mechanisms, although several challenges will have to be met. Serum/plasma proteome biomarkers are present in very low abundance, and there is high complexity involved due to the heterogeneity of cancers, for which there is a compelling need to develop sensitive and specific proteomic technologies and analytical platforms. To date, liquid chromatography mass spectrometry (LC-MS)-based quantitative proteomics has been a dominant analytical workflow to discover new potential cancer biomarkers in serum/plasma. This review will summarize the opportunities of serum proteomics for clinical applications; the challenges in the discovery of novel biomarkers in serum/plasma; and current proteomic strategies in cancer research for the application of serum/plasma proteomics for clinical prognostic, predictive, and diagnostic applications, as well as for monitoring minimal residual disease after treatments. We will highlight some of the recent advances in MS-based proteomics technologies with appropriate sample collection, processing uniformity, study design, and data analysis, focusing on how these integrated workflows can identify novel potential cancer biomarkers for clinical applications.
Collapse
|
5
|
Wang G, Yang Q, Li M, Zhang Y, Cai Y, Liang X, Fu Y, Xiao Z, Zhou M, Xie Z, Huang H, Huang Y, Chen Y, He Q, Peng F, Chen Z. Quantitative proteomic profiling of tumor-associated vascular endothelial cells in colorectal cancer. Biol Open 2019; 8:bio.042838. [PMID: 31036754 PMCID: PMC6550088 DOI: 10.1242/bio.042838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To investigate the global proteomic profiles of vascular endothelial cells (VECs) in the tumor microenvironment and antiangiogenic therapy for colorectal cancer (CRC), matched pairs of normal (NVECs) and tumor-associated VECs (TVECs) were purified from CRC tissues by laser capture microdissection and subjected to iTRAQ-based quantitative proteomics analysis. Here, 216 differentially expressed proteins (DEPs) were identified and used for bioinformatics analysis. Interestingly, these proteins were implicated in epithelial mesenchymal transition (EMT), ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, angiogenesis and HIF-1 signaling pathway, which may play important roles in CRC angiogenesis. Among these DEPs we found that Tenascin-C (TNC) was upregulated in TVECs of CRC and correlated with CRC multistage carcinogenesis and metastasis. Furthermore, the reduction of tumor-derived TNC could attenuate human umbilical vein endothelial cell (HUVEC) proliferation, migration and tube formation through ITGB3/FAK/Akt signaling pathway. Based on the present work, we provided a large-scale proteomic profiling of VECs in CRC with quantitative information, a certain number of potential antiangiogenic targets and a novel vision in the angiogenesis bio-mechanism of CRC. Summary: We provided large-scale proteomic profiling of vascular endothelial cells in colorectal cancer with quantitative information, a number of potential antiangiogenic targets and a novel vision in the angiogenesis bio-mechanism of CRC.
Collapse
Affiliation(s)
- Guoqiang Wang
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiongzhi Yang
- Department of Pathology, School of Basic Medical, Central South University, Changsha 410008, China
| | - Maoyu Li
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ye Zhang
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuxiang Cai
- Department of Pathology, School of Basic Medical, Central South University, Changsha 410008, China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ying Fu
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhefeng Xiao
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minze Zhou
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhongpeng Xie
- Department of Pathology, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huichao Huang
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yahui Huang
- Department of Pathology, School of Basic Medical, Central South University, Changsha 410008, China
| | - Yongheng Chen
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiongqiong He
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China .,Department of Pathology, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Pathology, School of Basic Medical, Central South University, Changsha 410008, China
| | - Fang Peng
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
6
|
Vakhrushev IV, Novikova SE, Tsvetkova AV, Karalkin PA, Pyatnitskii MA, Zgoda VG, Yarygin KN. Proteomic Profiling of HL-60 Cells during ATRA-Induced Differentiation. Bull Exp Biol Med 2018; 165:530-543. [PMID: 30121918 PMCID: PMC7087771 DOI: 10.1007/s10517-018-4210-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 11/29/2022]
Abstract
Acute promyelocytic leukemia, a form of acute myeloid leukemia, is characterized by cell differentiation arrest at the promyelocyte stage. Current therapeutic options include administration of all trans-retinoic acid (ATRA), but this treatment produces many side effects. ATRA is known to induce differentiation of leukemic cells into granulocytes, but the mechanism of this process is poorly studied. We performed comparative proteomic profiling of HL-60 promyelocytic cells at different stages of ATRA-induced differentiation to identify differentially expressed proteins by high-resolution mass spectrometry and relative quantitative analysis without isotope labels. A total of 1162 proteins identified by at least two unique peptides were analyzed, among them 46 and 172 differentially expressed proteins were identified in the nuclear and cytosol fractions, respectively. These differentially expressed proteins can represent candidate targets for combination therapy of acute promyelocytic leukemia.
Collapse
Affiliation(s)
- I V Vakhrushev
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - S E Novikova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Tsvetkova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - P A Karalkin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - M A Pyatnitskii
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|