1
|
Thakro V, Varshney N, Malik N, Daware A, Srivastava R, Mohanty JK, Basu U, Narnoliya L, Jha UC, Tripathi S, Tyagi AK, Parida SK. Functional allele of a MATE gene selected during domestication modulates seed color in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:53-71. [PMID: 37738381 DOI: 10.1111/tpj.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8-bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8-bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8-bp insertion containing the third cis-regulatory RY-motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker-assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.
Collapse
Affiliation(s)
- Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Varshney
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Anurag Daware
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rishi Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Udita Basu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Laxmi Narnoliya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Shailesh Tripathi
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
2
|
Koudounas K, Guirimand G, Hoyos LFR, Carqueijeiro I, Cruz PL, Stander E, Kulagina N, Perrin J, Oudin A, Besseau S, Lanoue A, Atehortùa L, St-Pierre B, Giglioli-Guivarc'h N, Papon N, O'Connor SE, Courdavault V. Tonoplast and Peroxisome Targeting of γ-tocopherol N-methyltransferase Homologs Involved in the Synthesis of Monoterpene Indole Alkaloids. PLANT & CELL PHYSIOLOGY 2022; 63:200-216. [PMID: 35166361 DOI: 10.1093/pcp/pcab160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.
Collapse
Affiliation(s)
- Konstantinos Koudounas
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Luisa Fernanda Rojas Hoyos
- Grupo de Biotransformación-Escuela de Microbiología, Universidad de Antioquia, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - Ines Carqueijeiro
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Pamela Lemos Cruz
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Emily Stander
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Natalja Kulagina
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Jennifer Perrin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Audrey Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Arnaud Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin 50010, Colombia
| | - Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Nicolas Papon
- GEIHP, SFR ICAT, University of Angers, Université de Bretagne Occidentale, 4 rue de Larrey - F49933, Angers 49000, France
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
- Graduate School of Sciences, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Guirimand G, Guihur A, Perello C, Phillips M, Mahroug S, Oudin A, Dugé de Bernonville T, Besseau S, Lanoue A, Giglioli-Guivarc’h N, Papon N, St-Pierre B, Rodríguez-Concepcíon M, Burlat V, Courdavault V. Cellular and Subcellular Compartmentation of the 2 C-Methyl-D-Erythritol 4-Phosphate Pathway in the Madagascar Periwinkle. PLANTS (BASEL, SWITZERLAND) 2020; 9:E462. [PMID: 32272573 PMCID: PMC7238098 DOI: 10.3390/plants9040462] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
The Madagascar periwinkle (Catharanthus roseus) synthesizes the highly valuable monoterpene indole alkaloids (MIAs) through a long metabolic route initiated by the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. In leaves, a complex compartmentation of the MIA biosynthetic pathway occurs at both the cellular and subcellular levels, notably for some gene products of the MEP pathway. To get a complete overview of the pathway organization, we cloned four genes encoding missing enzymes involved in the MEP pathway before conducting a systematic analysis of transcript distribution and protein subcellular localization. RNA in situ hybridization revealed that all MEP pathway genes were coordinately and mainly expressed in internal phloem-associated parenchyma of young leaves, reinforcing the role of this tissue in MIA biosynthesis. At the subcellular level, transient cell transformation and expression of fluorescent protein fusions showed that all MEP pathway enzymes were targeted to plastids. Surprisingly, two isoforms of 1-deoxy-D-xylulose 5-phosphate synthase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase initially exhibited an artifactual aggregated pattern of localization due to high protein accumulation. Immunogold combined with transmission electron microscopy, transient transformations performed with a low amount of transforming DNA and fusion/deletion experiments established that both enzymes were rather diffuse in stroma and stromules of plastids as also observed for the last six enzymes of the pathway. Taken together, these results provide new insights into a potential role of stromules in enhancing MIA precursor exchange with other cell compartments to favor metabolic fluxes towards the MIA biosynthesis.
Collapse
Affiliation(s)
- Grégory Guirimand
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Graduate School of Science, Technology & Innovation, Kobe University, Kobe 657-8501, Japan
| | - Anthony Guihur
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1007 Lausanne, Switzerland
| | - Catalina Perello
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; (C.P.); (M.R.-C.)
| | - Michael Phillips
- Department of Biology, University of Toronto–Mississauga, Mississauga, 3359 Mississauga Road, ON L5L 1C6, Canada;
| | - Samira Mahroug
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Department of Environment Sciences, University of Sidi-Bel-Abbes, 22000 Sidi Bel Abbès, Algeria
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Nathalie Giglioli-Guivarc’h
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, Université d’Angers, UNIV. Brest, F-49333 Angers, France;
| | - Benoit St-Pierre
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Manuel Rodríguez-Concepcíon
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; (C.P.); (M.R.-C.)
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France;
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| |
Collapse
|