1
|
Münzker L, Kimani SW, Fowkes MM, Dong A, Zheng H, Li Y, Dasovich M, Zak KM, Leung AKL, Elkins JM, Kessler D, Arrowsmith CH, Halabelian L, Böttcher J. A ligand discovery toolbox for the WWE domain family of human E3 ligases. Commun Biol 2024; 7:901. [PMID: 39048679 PMCID: PMC11269756 DOI: 10.1038/s42003-024-06584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/14/2024] [Indexed: 07/27/2024] Open
Abstract
The WWE domain is a relatively under-researched domain found in twelve human proteins and characterized by a conserved tryptophan-tryptophan-glutamate (WWE) sequence motif. Six of these WWE domain-containing proteins also contain domains with E3 ubiquitin ligase activity. The general recognition of poly-ADP-ribosylated substrates by WWE domains suggests a potential avenue for development of Proteolysis-Targeting Chimeras (PROTACs). Here, we present novel crystal structures of the HUWE1, TRIP12, and DTX1 WWE domains in complex with PAR building blocks and their analogs, thus enabling a comprehensive analysis of the PAR binding site structural diversity. Furthermore, we introduce a versatile toolbox of biophysical and biochemical assays for the discovery and characterization of novel WWE domain binders, including fluorescence polarization-based PAR binding and displacement assays, 15N-NMR-based binding affinity assays and 19F-NMR-based competition assays. Through these assays, we have characterized the binding of monomeric iso-ADP-ribose (iso-ADPr) and its nucleotide analogs with the aforementioned WWE proteins. Finally, we have utilized the assay toolbox to screen a small molecule fragment library leading to the successful discovery of novel ligands targeting the HUWE1 WWE domain.
Collapse
Affiliation(s)
- Lena Münzker
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Serah W Kimani
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Milan M Fowkes
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Hong Zheng
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | | | | | | | - Jonathan M Elkins
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria.
| |
Collapse
|
2
|
Anmangandla A, Jana S, Peng K, Wallace SD, Bagde SR, Drown BS, Xu J, Hergenrother PJ, Fromme JC, Lin H. A Fluorescence Polarization Assay for Macrodomains Facilitates the Identification of Potent Inhibitors of the SARS-CoV-2 Macrodomain. ACS Chem Biol 2023; 18:1200-1207. [PMID: 37126856 PMCID: PMC10178785 DOI: 10.1021/acschembio.3c00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Viral macrodomains, which can bind to and/or hydrolyze adenine diphosphate ribose (ADP-ribose or ADPr) from proteins, have been suggested to counteract host immune response and be viable targets for the development of antiviral drugs. Therefore, developing high-throughput screening (HTS) techniques for macrodomain inhibitors is of great interest. Herein, using a novel tracer TAMRA-ADPr, an ADP-ribose compound conjugated with tetramethylrhodamine, we developed a robust fluorescence polarization assay for various viral and human macrodomains including SARS-CoV-2 Macro1, VEEV Macro, CHIKV Macro, human MacroD1, MacroD2, and PARP9 Macro2. Using this assay, we validated Z8539 (IC50 6.4 μM) and GS441524 (IC50 15.2 μM), two literature-reported small-molecule inhibitors of SARS-CoV-2 Macro1. Our data suggest that GS441524 is highly selective for SARS-CoV-2 Macro1 over other human and viral macrodomains. Furthermore, using this assay, we identified pNP-ADPr (ADP-ribosylated p-nitrophenol, IC50 370 nM) and TFMU-ADPr (ADP-ribosylated trifluoromethyl umbelliferone, IC50 590 nM) as the most potent SARS-CoV-2 Macro1 binders reported to date. An X-ray crystal structure of SARS-CoV-2 Macro1 in complex with TFMU-ADPr revealed how the TFMU moiety contributes to the binding affinity. Our data demonstrate that this fluorescence polarization assay is a useful addition to the HTS methods for the identification of macrodomain inhibitors.
Collapse
Affiliation(s)
- Ananya Anmangandla
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Sadhan Jana
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Kewen Peng
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Shamar D. Wallace
- Department
of Molecular Biology and Genetics, Weill Institute for Cell and Molecular
Biology, Cornell University, Ithaca, New York 14853, United States
| | - Saket R. Bagde
- Department
of Molecular Biology and Genetics, Weill Institute for Cell and Molecular
Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bryon S. Drown
- Department
of Chemistry, Institute for Genomic Biology,
and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600
S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jiashu Xu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Paul J. Hergenrother
- Department
of Chemistry, Institute for Genomic Biology,
and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600
S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - J. Christopher Fromme
- Department
of Molecular Biology and Genetics, Weill Institute for Cell and Molecular
Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Howard
Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Xue G, Braczyk K, Gonçalves-Carneiro D, Dawidziak DM, Sanchez K, Ong H, Wan Y, Zadrozny KK, Ganser-Pornillos BK, Bieniasz PD, Pornillos O. Poly(ADP-ribose) potentiates ZAP antiviral activity. PLoS Pathog 2022; 18:e1009202. [PMID: 35130321 PMCID: PMC8853533 DOI: 10.1371/journal.ppat.1009202] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2022] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Zinc-finger antiviral protein (ZAP), also known as poly(ADP-ribose) polymerase 13 (PARP13), is an antiviral factor that selectively targets viral RNA for degradation. ZAP is active against both DNA and RNA viruses, including important human pathogens such as hepatitis B virus and type 1 human immunodeficiency virus (HIV-1). ZAP selectively binds CpG dinucleotides through its N-terminal RNA-binding domain, which consists of four zinc fingers. ZAP also contains a central region that consists of a fifth zinc finger and two WWE domains. Through structural and biochemical studies, we found that the fifth zinc finger and tandem WWEs of ZAP combine into a single integrated domain that binds to poly(ADP-ribose) (PAR), a cellular polynucleotide. PAR binding is mediated by the second WWE module of ZAP and likely involves specific recognition of an adenosine diphosphate-containing unit of PAR. Mutation of the PAR binding site in ZAP abrogates the interaction in vitro and diminishes ZAP activity against a CpG-rich HIV-1 reporter virus and murine leukemia virus. In cells, PAR facilitates formation of non-membranous sub-cellular compartments such as DNA repair foci, spindle poles and cytosolic RNA stress granules. Our results suggest that ZAP-mediated viral mRNA degradation is facilitated by PAR, and provides a biophysical rationale for the reported association of ZAP with RNA stress granules.
Collapse
Affiliation(s)
- Guangai Xue
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Klaudia Braczyk
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Gonçalves-Carneiro
- Laboratory of Retrovirology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Daria M. Dawidziak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Katarzyna Sanchez
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Heley Ong
- Laboratory of Retrovirology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Yueping Wan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kaneil K. Zadrozny
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Barbie K. Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|