1
|
Cui Z, Ayva CE, Liew YJ, Guo Z, Mutschler R, Dreier B, Fiorito MM, Walden P, Howard CB, Ely F, Plückthun A, Pretorius C, Ungerer JPJ, Buckle AM, Alexandrov K. mRNA Display Pipeline for Protein Biosensor Construction. ACS Sens 2024; 9:2846-2857. [PMID: 38807313 PMCID: PMC11218749 DOI: 10.1021/acssensors.3c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Despite the significant potential of protein biosensors, their construction remains a trial-and-error process. The most obvious approach for addressing this is to utilize modular biosensor architectures where specificity-conferring modalities can be readily generated to recognize new targets. Toward this goal, we established a workflow that uses mRNA display-based selection of hyper-stable monobody domains for the target of choice or ribosome display to select equally stable DARPins. These binders were integrated into a two-component allosteric biosensor architecture based on a calmodulin-reporter chimera. This workflow was tested by developing biosensors for liver toxicity markers such as cytosolic aspartate aminotransferase, mitochondrial aspartate aminotransferase, and alanine aminotransferase 1. We demonstrate that our pipeline consistently produced >103 unique binders for each target within a week. Our analysis revealed that the affinity of the binders for their targets was not a direct predictor of the binder's performance in a biosensor context. The interactions between the binding domains and the reporter module affect the biosensor activity and the dynamic range. We conclude that following binding domain selection, the multiplexed biosensor assembly and prototyping appear to be the most promising approach for identifying biosensors with the desired properties.
Collapse
Affiliation(s)
- Zhenling Cui
- ARC
Centre of Excellence in Synthetic Biology, Brisbane, Queensland 4001, Australia
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Cagla Ergun Ayva
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Yi Jin Liew
- CSIRO
Health & Biosecurity, Westmead, New South Wales 2145,Australia
| | - Zhong Guo
- ARC
Centre of Excellence in Synthetic Biology, Brisbane, Queensland 4001, Australia
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Roxane Mutschler
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Birgit Dreier
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Maria M Fiorito
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Patricia Walden
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Christopher B Howard
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Andreas Plückthun
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Carel Pretorius
- Department
of Chemical Pathology, Pathology Queensland, Brisbane, Queensland 4006, Australia
- Faculty
of Health and Behavioural Sciences, The
University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jacobus PJ Ungerer
- Department
of Chemical Pathology, Pathology Queensland, Brisbane, Queensland 4006, Australia
- Faculty
of Health and Behavioural Sciences, The
University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Kirill Alexandrov
- ARC
Centre of Excellence in Synthetic Biology, Brisbane, Queensland 4001, Australia
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
2
|
Buzas D, Sun H, Toelzer C, Yadav SKN, Borucu U, Gautam G, Gupta K, Bufton JC, Capin J, Sessions RB, Garzoni F, Berger I, Schaffitzel C. Engineering the ADDobody protein scaffold for generation of high-avidity ADDomer super-binders. Structure 2024; 32:342-351.e6. [PMID: 38198950 PMCID: PMC7616808 DOI: 10.1016/j.str.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Adenovirus-derived nanoparticles (ADDomer) comprise 60 copies of adenovirus penton base protein (PBP). ADDomer is thermostable, rendering the storage, transport, and deployment of ADDomer-based therapeutics independent of a cold chain. To expand the scope of ADDomers for new applications, we engineered ADDobodies, representing PBP crown domain, genetically separated from PBP multimerization domain. We inserted heterologous sequences into hyper-variable loops, resulting in monomeric, thermostable ADDobodies expressed at high yields in Escherichia coli. The X-ray structure of an ADDobody prototype validated our design. ADDobodies can be used in ribosome display experiments to select a specific binder against a target, with an enrichment factor of ∼104-fold per round. ADDobodies can be re-converted into ADDomers by genetically reconnecting the selected ADDobody with the PBP multimerization domain from a different species, giving rise to a multivalent nanoparticle, called Chimera, confirmed by a 2.2 Å electron cryo-microscopy structure. Chimera comprises 60 binding sites, resulting in ultra-high, picomolar avidity to the target.
Collapse
Affiliation(s)
- Dora Buzas
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | - Huan Sun
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | - Christine Toelzer
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Sathish K N Yadav
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ufuk Borucu
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kapil Gupta
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Imophoron Ltd, Science Creates Old Market, Midland Road, Bristol BS2 0JZ, UK
| | - Joshua C Bufton
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Julien Capin
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Frederic Garzoni
- Imophoron Ltd, Science Creates Old Market, Midland Road, Bristol BS2 0JZ, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | | |
Collapse
|
3
|
Menzies SK, Arinto-Garcia R, Amorim FG, Cardoso IA, Abada C, Crasset T, Durbesson F, Edge RJ, El-Kazzi P, Hall S, Redureau D, Stenner R, Boldrini-França J, Sun H, Roldão A, Alves PM, Harrison RA, Vincentelli R, Berger I, Quinton L, Casewell NR, Schaffitzel C. ADDovenom: Thermostable Protein-Based ADDomer Nanoparticles as New Therapeutics for Snakebite Envenoming. Toxins (Basel) 2023; 15:673. [PMID: 38133177 PMCID: PMC10747859 DOI: 10.3390/toxins15120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Snakebite envenoming can be a life-threatening medical emergency that requires prompt medical intervention to neutralise the effects of venom toxins. Each year up to 138,000 people die from snakebites and threefold more victims suffer life-altering disabilities. The current treatment of snakebite relies solely on antivenom-polyclonal antibodies isolated from the plasma of hyperimmunised animals-which is associated with numerous deficiencies. The ADDovenom project seeks to deliver a novel snakebite therapy, through the use of an innovative protein-based scaffold as a next-generation antivenom. The ADDomer is a megadalton-sized, thermostable synthetic nanoparticle derived from the adenovirus penton base protein; it has 60 high-avidity binding sites to neutralise venom toxins. Here, we outline our experimental strategies to achieve this goal using state-of-the-art protein engineering, expression technology and mass spectrometry, as well as in vitro and in vivo venom neutralisation assays. We anticipate that the approaches described here will produce antivenom with unparalleled efficacy, safety and affordability.
Collapse
Affiliation(s)
- Stefanie K. Menzies
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Raquel Arinto-Garcia
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fernanda Gobbi Amorim
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Iara Aimê Cardoso
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Camille Abada
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Thomas Crasset
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Fabien Durbesson
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Rebecca J. Edge
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Priscila El-Kazzi
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Sophie Hall
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Damien Redureau
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Richard Stenner
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Johara Boldrini-França
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Huan Sun
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Robert A. Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Imre Berger
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
4
|
Zeng Y, Woolley M, Chockalingam K, Thomas B, Arora S, Hook M, Chen Z. Click display: a rapid and efficient in vitro protein display method for directed evolution. Nucleic Acids Res 2023; 51:e89. [PMID: 37548398 PMCID: PMC10484664 DOI: 10.1093/nar/gkad643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
We describe a novel method for in vitro protein display-click display-that does not depend on maintaining RNA integrity during biopanning and yields covalently linked protein-cDNA complexes from double-stranded input DNA within 2 h. The display is achieved in a one-pot format encompassing transcription, translation and reverse transcription reactions in series. Stable linkage between proteins and the encoding cDNA is mediated by a modified DNA linker-ML-generated via a click chemistry reaction between a puromycin-containing oligo and a cDNA synthesis primer. Biopanning of a click-displayed mock library coupled with next-generation sequencing analysis revealed >600-fold enrichment of target binders within a single round of panning. A synthetic library of Designed Ankyrin Repeat Proteins (DARPins) with ∼1012 individual members was generated using click display in a 25-μl reaction and six rounds of library panning against a model protein yielded a panel of nanomolar binders. This study establishes click display as a powerful tool for protein binder discovery/engineering and provides a convenient platform for in vitro biopanning selection even in RNase-rich environments such as on whole cells.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Michael Woolley
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Karuppiah Chockalingam
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Benjamin Thomas
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, Houston, TX 77030, USA
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
5
|
Westlund K, Montera M, Goins A, Alles S, Afaghpour-Becklund M, Bartel R, Durvasula R, Kunamneni A. Single-chain Fragment variable antibody targeting cholecystokinin-B receptor for pain reduction. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100067. [PMID: 34458647 PMCID: PMC8378781 DOI: 10.1016/j.ynpai.2021.100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 05/13/2023]
Abstract
The cholecystokinin B receptor and its neuropeptide ligand are upregulated in chronic neuropathic pain models. Single-chain Fragment variable antibodies were generated as preferred non-opioid targeting therapy blocking the cholecystokinin B receptor to inhibit chronic neuropathic pain models in vivo and in vitro. Engineered antibodies of this type feature binding activity similar to monoclonal antibodies but with stronger affinity and increased tissue penetrability due to their smaller size. More importantly, single-chain Fragment variable antibodies have promising biotherapeutic applications for both nervous and immune systems, now recognized as interactive in chronic pain. A mouse single-chain Fragment variable antibody library recognizing a fifteen amino acid extracellular peptide fragment of the cholecystokinin B receptor was generated from immunized spleens. Ribosome display, a powerful cell-free technology, was applied for recombinant antibody selection. Antibodies with higher affinity, stability, solubility, and binding specificity for cholecystokinin B not A receptor were selected and optimized for in vivo and in vitro efficacy. A single dose of the lead candidate reduced mechanical and cold hypersensitivity in two rodent models of neuropathic pain for at least seven weeks. Continuing efficacy was evident with either intraperitoneal or intranasal dosing. Likewise, the lead single-chain Fragment variable antibody totally prevented development of anxiety- and depression-like behaviors and cognitive deficits typical in the models. Reduction of neuronal firing frequency was evident in trigeminal ganglia primary neuronal cultures treated in vitro with the cholecystokinin B receptor antibody. Immunofluorescent staining intensity in the trigeminal neuron primary cultures was significantly reduced incrementally after overnight binding with increasingly higher dilutions of the single-chain Fragment variable antibody. While it is reported that single-chain Fragment variable antibodies are removed systemically within 2-6 h, Western blot evidence indicates the His-tag marker remained after 7 weeks in the trigeminal ganglia and in the dorsolateral medulla, providing evidence of brain and ganglia penetrance known to be compromised in overactivated states. This project showcases the in vivo efficacy of our lead single-chain Fragment variable antibody indicating its potential for development as a non-opioid, non-addictive therapeutic intervention for chronic pain. Importantly, studies by others have indicated treatments with cholecystokinin B receptor antagonists suppress maintenance and reactivation of morphine dependence in place preference tests while lowering tolerance and dose requirements. Our future studies remain to address these potential benefits that may accompany the cholecystokinin B receptor biological therapy. Both chronic sciatic and orofacial pain can be unrelenting and excruciating, reducing quality of life as well as diminishing physical and mental function. An effective non-opiate, non-addictive therapy with potential to significantly reduce chronic neuropathic pain long term is greatly needed.
Collapse
Key Words
- ANOVA, analysis of variance
- ARM, antibody ribosome mRNA
- Anxiety
- BBB, blood–brain barrier
- CCK-8, cholecystokinin octapeptide
- CCK-BR, cholecystokinin B receptor
- CPP, conditioned place preference
- Chronic pain
- DRG, dorsal root ganglia
- Depression
- Eukaryotic ribosome display
- FRICT-ION, foramen rotundum inflammatory compression trigeminal infraorbital nerve model
- GPCR, G-protein-coupled receptor
- IACUC, Institutional Animal Care and Use Committee
- ION, infraorbital nerve
- MΩ, megaOhms
- PBS, phosphate buffered saline
- SEM, standard error of the mean
- TG, trigeminal ganglia
- ms, milliseconds
- pA, picoAmps
- scFv
- scFv, single-chain Fragment variable antibody
Collapse
Affiliation(s)
- K.N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA
Health Care System, Albuquerque, NM, USA
| | - M.A. Montera
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - A.E. Goins
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - S.R.A. Alles
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - M. Afaghpour-Becklund
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - R. Bartel
- Department of Anesthesiology & Critical Care Medicine, University of
New Mexico Health Sciences Center, Albuquerque, NM 87106-0001, USA
| | - R. Durvasula
- Division of Infectious Diseases, Department of Internal Medicine, Mayo
Clinic, Jacksonville, FL, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL
60153-3328, USA
| | - A. Kunamneni
- Division of Infectious Diseases, Department of Internal Medicine, Mayo
Clinic, Jacksonville, FL, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL
60153-3328, USA
| |
Collapse
|
6
|
Gautam V, Nimmanpipug P, Zain SM, Rahman NA, Lee VS. Molecular Dynamics Simulations in Designing DARPins as Phosphorylation-Specific Protein Binders of ERK2. Molecules 2021; 26:molecules26154540. [PMID: 34361694 PMCID: PMC8347146 DOI: 10.3390/molecules26154540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) play key roles in promoting cell survival and proliferation through the phosphorylation of various substrates. Remarkable antitumour activity is found in many inhibitors that act upstream of the ERK pathway. However, drug-resistant tumour cells invariably emerge after their use due to the reactivation of ERK1/2 signalling. ERK1/2 inhibitors have shown clinical efficacy as a therapeutic strategy for the treatment of tumours with mitogen-activated protein kinase (MAPK) upstream target mutations. These inhibitors may be used as a possible strategy to overcome acquired resistance to MAPK inhibitors. Here, we report a class of repeat proteins-designed ankyrin repeat protein (DARPin) macromolecules targeting ERK2 as inhibitors. The structural basis of ERK2-DARPin interactions based on molecular dynamics (MD) simulations was studied. The information was then used to predict stabilizing mutations employing a web-based algorithm, MAESTRO. To evaluate whether these design strategies were successfully deployed, we performed all-atom, explicit-solvent molecular dynamics (MD) simulations. Two mutations, Ala → Asp and Ser → Leu, were found to perform better than the original sequence (DARPin E40) based on the associated energy and key residues involved in protein-protein interaction. MD simulations and analysis of the data obtained on these mutations supported our predictions.
Collapse
Affiliation(s)
- Vertika Gautam
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (V.G.); (S.M.Z.); (N.A.R.)
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence for Innovation in Analytical Science and Technology (I-ANALY-S-T), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sharifuddin Md Zain
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (V.G.); (S.M.Z.); (N.A.R.)
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (V.G.); (S.M.Z.); (N.A.R.)
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (V.G.); (S.M.Z.); (N.A.R.)
- Center of Excellence for Innovation in Analytical Science and Technology (I-ANALY-S-T), Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
7
|
Sivaccumar J, Sandomenico A, Vitagliano L, Ruvo M. Monoclonal Antibodies: A Prospective and Retrospective View. Curr Med Chem 2021; 28:435-471. [PMID: 32072887 DOI: 10.2174/0929867327666200219142231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoclonal Antibodies (mAbs) represent one of the most important classes of biotherapeutic agents. They are used to cure many diseases, including cancer, autoimmune diseases, cardiovascular diseases, angiogenesis-related diseases and, more recently also haemophilia. They can be highly varied in terms of format, source, and specificity to improve efficacy and to obtain more targeted applications. This can be achieved by leaving substantially unchanged the basic structural components for paratope clustering. OBJECTIVES The objective was to trace the most relevant findings that have deserved prestigious awards over the years, to report the most important clinical applications and to emphasize their latest emerging therapeutic trends. RESULTS We report the most relevant milestones and new technologies adopted for antibody development. Recent efforts in generating new engineered antibody-based formats are briefly reviewed. The most important antibody-based molecules that are (or are going to be) used for pharmacological practice have been collected in useful tables. CONCLUSION The topics here discussed prove the undisputed role of mAbs as innovative biopharmaceuticals molecules and as vital components of targeted pharmacological therapies.
Collapse
Affiliation(s)
- Jwala Sivaccumar
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
8
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
|