1
|
Breger K, Kunkler CN, O'Leary NJ, Hulewicz JP, Brown JA. Ghost authors revealed: The structure and function of human N 6 -methyladenosine RNA methyltransferases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1810. [PMID: 37674370 PMCID: PMC10915109 DOI: 10.1002/wrna.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 09/08/2023]
Abstract
Despite the discovery of modified nucleic acids nearly 75 years ago, their biological functions are still being elucidated. N6 -methyladenosine (m6 A) is the most abundant modification in eukaryotic messenger RNA (mRNA) and has also been detected in non-coding RNAs, including long non-coding RNA, ribosomal RNA, and small nuclear RNA. In general, m6 A marks can alter RNA secondary structure and initiate unique RNA-protein interactions that can alter splicing, mRNA turnover, and translation, just to name a few. Although m6 A marks in human RNAs have been known to exist since 1974, the structures and functions of methyltransferases responsible for writing m6 A marks have been established only recently. Thus far, there are four confirmed human methyltransferases that catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to the N6 position of adenosine, producing m6 A: methyltransferase-like protein (METTL) 3/METTL14 complex, METTL16, METTL5, and zinc-finger CCHC-domain-containing protein 4. Though the methyltransferases have unique RNA targets, all human m6 A RNA methyltransferases contain a Rossmann fold with a conserved SAM-binding pocket, suggesting that they utilize a similar catalytic mechanism for methyl transfer. For each of the human m6 A RNA methyltransferases, we present the biological functions and links to human disease, RNA targets, catalytic and kinetic mechanisms, and macromolecular structures. We also discuss m6 A marks in human viruses and parasites, assigning m6 A marks in the transcriptome to specific methyltransferases, small molecules targeting m6 A methyltransferases, and the enzymes responsible for hypermodified m6 A marks and their biological functions in humans. Understanding m6 A methyltransferases is a critical steppingstone toward establishing the m6 A epitranscriptome and more broadly the RNome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kurtis Breger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Charlotte N Kunkler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nathan J O'Leary
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Role of Epitranscriptomic and Epigenetic Modifications during the Lytic and Latent Phases of Herpesvirus Infections. Microorganisms 2022; 10:microorganisms10091754. [PMID: 36144356 PMCID: PMC9503318 DOI: 10.3390/microorganisms10091754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Herpesviruses are double-stranded DNA viruses occurring at a high prevalence in the human population and are responsible for a wide array of clinical manifestations and diseases, from mild to severe. These viruses are classified in three subfamilies (Alpha-, Beta- and Gammaherpesvirinae), with eight members currently known to infect humans. Importantly, all herpesviruses can establish lifelong latent infections with symptomatic or asymptomatic lytic reactivations. Accumulating evidence suggest that chemical modifications of viral RNA and DNA during the lytic and latent phases of the infections caused by these viruses, are likely to play relevant roles in key aspects of the life cycle of these viruses by modulating and regulating their replication, establishment of latency and evasion of the host antiviral response. Here, we review and discuss current evidence regarding epitranscriptomic and epigenetic modifications of herpesviruses and how these can influence their life cycles. While epitranscriptomic modifications such as m6A are the most studied to date and relate to positive effects over the replication of herpesviruses, epigenetic modifications of the viral genome are generally associated with defense mechanisms of the host cells to suppress viral gene transcription. However, herpesviruses can modulate these modifications to their own benefit to persist in the host, undergo latency and sporadically reactivate.
Collapse
|
3
|
Li N, Rana TM. Regulation of antiviral innate immunity by chemical modification of viral RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1720. [PMID: 35150188 PMCID: PMC9786758 DOI: 10.1002/wrna.1720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
More than 100 chemical modifications of RNA, termed the epitranscriptome, have been described, most of which occur in prokaryotic and eukaryotic ribosomal, transfer, and noncoding RNA and eukaryotic messenger RNA. DNA and RNA viruses can modify their RNA either directly via genome-encoded enzymes or by hijacking the host enzymatic machinery. Among the many RNA modifications described to date, four play particularly important roles in promoting viral infection by facilitating viral gene expression and replication and by enabling escape from the host innate immune response. Here, we discuss our current understanding of the mechanisms by which the RNA modifications such as N6 -methyladenosine (m6A), N6 ,2'-O-dimethyladenosine (m6Am), 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and 2'-O-methylation (Nm) promote viral replication and/or suppress recognition by innate sensors and downstream activation of the host antiviral response. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Na Li
- Division of Genetics, Department of Pediatrics, Program in ImmunologyInstitute for Genomic MedicineLa JollaCaliforniaUSA
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Program in ImmunologyInstitute for Genomic MedicineLa JollaCaliforniaUSA
| |
Collapse
|
4
|
Zhang Q, Kang Y, Wang S, Gonzalez GM, Li W, Hui H, Wang Y, Rana TM. HIV reprograms host m 6Am RNA methylome by viral Vpr protein-mediated degradation of PCIF1. Nat Commun 2021; 12:5543. [PMID: 34545078 PMCID: PMC8452764 DOI: 10.1038/s41467-021-25683-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
N6,2′-O-dimethyladenosine (m6Am) is an abundant RNA modification located adjacent to the 5′-end of the mRNA 7-methylguanosine (m7G) cap structure. m6A methylation on 2′-O-methylated A at the 5′-ends of mRNAs is catalyzed by the methyltransferase Phosphorylated CTD Interacting Factor 1 (PCIF1). The role of m6Am and the function of PCIF1 in regulating host–pathogens interactions are unknown. Here, we investigate the dynamics and reprogramming of the host m6Am RNA methylome during HIV infection. We show that HIV infection induces a dramatic decrease in m6Am of cellular mRNAs. By using PCIF1 depleted T cells, we identify 2237 m6Am genes and 854 are affected by HIV infection. Strikingly, we find that PCIF1 methyltransferase function restricts HIV replication. Further mechanism studies show that HIV viral protein R (Vpr) interacts with PCIF1 and induces PCIF1 ubiquitination and degradation. Among the m6Am genes, we find that PCIF1 inhibits HIV infection by enhancing a transcription factor ETS1 (ETS Proto-Oncogene 1, transcription factor) stability that binds HIV promoter to regulate viral transcription. Altogether, our study discovers the role of PCIF1 in HIV–host interactions, identifies m6Am modified genes in T cells which are affected by viral infection, and reveals how HIV regulates host RNA epitranscriptomics through PCIF1 degradation. m6Am is a modification of the 5′ end of mRNAs catalyzed by PCIF1. Here, Zhang et al. show that HIV infection induces a decrease in m6Am of cellular mRNAs through Vpr-mediated PCIF1 ubiquitination and degradation, resulting in increased HIV replication through regulation of host transcription factors.
Collapse
Affiliation(s)
- Qiong Zhang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, Center for AIDS Research, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yuqi Kang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, Center for AIDS Research, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Shaobo Wang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, Center for AIDS Research, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Gwendolyn Michelle Gonzalez
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Wanyu Li
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, Center for AIDS Research, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hui Hui
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, Center for AIDS Research, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, Center for AIDS Research, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Li N, Hui H, Bray B, Gonzalez GM, Zeller M, Anderson KG, Knight R, Smith D, Wang Y, Carlin AF, Rana TM. METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection. Cell Rep 2021; 35:109091. [PMID: 33961823 PMCID: PMC8090989 DOI: 10.1016/j.celrep.2021.109091] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/18/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
It is urgent and important to understand the relationship of the widespread severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) with host immune response and study the underlining molecular mechanism. N6-methylation of adenosine (m6A) in RNA regulates many physiological and disease processes. Here, we investigate m6A modification of the SARS-CoV-2 gene in regulating the host cell innate immune response. Our data show that the SARS-CoV-2 virus has m6A modifications that are enriched in the 3' end of the viral genome. We find that depletion of the host cell m6A methyltransferase METTL3 decreases m6A levels in SARS-CoV-2 and host genes, and m6A reduction in viral RNA increases RIG-I binding and subsequently enhances the downstream innate immune signaling pathway and inflammatory gene expression. METTL3 expression is reduced and inflammatory genes are induced in patients with severe coronavirus disease 2019 (COVID-19). These findings will aid in the understanding of COVID-19 pathogenesis and the design of future studies regulating innate immunity for COVID-19 treatment.
Collapse
Affiliation(s)
- Na Li
- Division of Genetics, Program in Immunology, Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Hui Hui
- Division of Genetics, Program in Immunology, Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Bioinformatics Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Bill Bray
- Division of Genetics, Program in Immunology, Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Gwendolyn Michelle Gonzalez
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Mark Zeller
- Department of Immunology and Microbiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kristian G Anderson
- Department of Immunology and Microbiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Microbiome Innovations, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Davey Smith
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Aaron F Carlin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tariq M Rana
- Division of Genetics, Program in Immunology, Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Huff S, Tiwari SK, Gonzalez GM, Wang Y, Rana TM. m 6A-RNA Demethylase FTO Inhibitors Impair Self-Renewal in Glioblastoma Stem Cells. ACS Chem Biol 2021; 16:324-333. [PMID: 33412003 PMCID: PMC7901021 DOI: 10.1021/acschembio.0c00841] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
N6-methyladenosine (m6A)
has emerged as the most abundant mRNA modification that regulates
gene expression in many physiological processes. m6A modification
in RNA controls cellular proliferation and pluripotency and has been
implicated in the progression of multiple disease states, including
cancer. RNA m6A methylation is controlled by a multiprotein
“writer” complex including the enzymatic factor methyltransferase-like
protein 3 (METTL3) that regulates methylation and two “eraser”
proteins, RNA demethylase ALKBH5 (ALKBH5) and fat mass- and obesity-associated
protein (FTO), that demethylate m6A in transcripts. FTO
can also demethylate N6,2′-O-dimethyladenosine (m6Am), which
is found adjacent to the m7G cap structure in mRNA. FTO
has recently gained interest as a potential cancer target, and small
molecule FTO inhibitors such as meclofenamic acid have been shown
to prevent tumor progression in both acute myeloid leukemia and glioblastoma in vivo models. However, current FTO inhibitors are unsuitable
for clinical applications due to either poor target selectivity or
poor pharmacokinetics. In this work, we describe the structure-based
design, synthesis, and biochemical evaluation of a new class of FTO
inhibitors. Rational design of 20 small molecules with low micromolar
IC50’s and specificity toward FTO over ALKBH5 identified
two competitive inhibitors FTO-02 and FTO-04. Importantly, FTO-04
prevented neurosphere formation in patient-derived glioblastoma stem
cells (GSCs) without inhibiting the growth of healthy neural stem
cell-derived neurospheres. Finally, FTO-04 increased m6A and m6Am levels in GSCs consistent with FTO
inhibition. These results support FTO-04 as a potential new lead for
treatment of glioblastoma.
Collapse
Affiliation(s)
- Sarah Huff
- Division of Genetics, Department of Pediatrics, Center for Drug Discovery Innovation, Program in Immunology, Institute for Genomic Medicine, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, Center for Drug Discovery Innovation, Program in Immunology, Institute for Genomic Medicine, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
| | - Gwendolyn M. Gonzalez
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Center for Drug Discovery Innovation, Program in Immunology, Institute for Genomic Medicine, 9500 Gilman Drive MC 0762, La Jolla, California 92093, United States
- San Diego Center for Precision Immunotherapy, Moores Cancer Center, 3855 Health Sciences Drive, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Wang L, Hui H, Agrawal K, Kang Y, Li N, Tang R, Yuan J, Rana TM. m 6 A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J 2020; 39:e104514. [PMID: 32964498 PMCID: PMC7560214 DOI: 10.15252/embj.2020104514] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
An impressive clinical success has been observed in treating a variety of cancers using immunotherapy with programmed cell death-1 (PD-1) checkpoint blockade. However, limited response in most patients treated with anti-PD-1 antibodies remains a challenge, requiring better understanding of molecular mechanisms limiting immunotherapy. In colorectal cancer (CRC) resistant to immunotherapy, mismatch-repair-proficient or microsatellite instability-low (pMMR-MSI-L) tumors have low mutation burden and constitute ~85% of patients. Here, we show that inhibition of N6 -methyladenosine (m6 A) mRNA modification by depletion of methyltransferases, Mettl3 and Mettl14, enhanced response to anti-PD-1 treatment in pMMR-MSI-L CRC and melanoma. Mettl3- or Mettl14-deficient tumors increased cytotoxic tumor-infiltrating CD8+ T cells and elevated secretion of IFN-γ, Cxcl9, and Cxcl10 in tumor microenvironment in vivo. Mechanistically, Mettl3 or Mettl14 loss promoted IFN-γ-Stat1-Irf1 signaling through stabilizing the Stat1 and Irf1 mRNA via Ythdf2. Finally, we found a negative correlation between METTL3 or METTL14 and STAT1 in 59 patients with pMMR-MSI-L CRC tumors. Altogether, our findings uncover a new awareness of the function of RNA methylation in adaptive immunity and provide METTL3 and METTL14 as potential therapeutic targets in anticancer immunotherapy.
Collapse
Affiliation(s)
- Lingling Wang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hui Hui
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.,Bioinformatics Program, University of California San Diego, La Jolla, CA, USA
| | - Kriti Agrawal
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.,Bioinformatics Program, University of California San Diego, La Jolla, CA, USA
| | - Yuqi Kang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.,Bioinformatics Program, University of California San Diego, La Jolla, CA, USA
| | - Na Li
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rachel Tang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jiajun Yuan
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.,San Diego Center for Precision Immunotherapy, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci U S A 2020; 117:20159-20170. [PMID: 32747553 PMCID: PMC7443867 DOI: 10.1073/pnas.1918986117] [Citation(s) in RCA: 341] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment, many patients do not respond or develop resistance to ICB. N6 -methylation of adenosine (m6A) in RNA regulates many pathophysiological processes. Here, we show that deletion of the m6A demethylase Alkbh5 sensitized tumors to cancer immunotherapy. Alkbh5 has effects on m6A density and splicing events in tumors during ICB. Alkbh5 modulates Mct4/Slc16a3 expression and lactate content of the tumor microenvironment and the composition of tumor-infiltrating Treg and myeloid-derived suppressor cells. Importantly, a small-molecule Alkbh5 inhibitor enhanced the efficacy of cancer immunotherapy. Notably, the ALKBH5 gene mutation and expression status of melanoma patients correlate with their response to immunotherapy. Our results suggest that m6A demethylases in tumor cells contribute to the efficacy of immunotherapy and identify ALKBH5 as a potential therapeutic target to enhance immunotherapy outcome in melanoma, colorectal, and potentially other cancers.
Collapse
|