1
|
Zhang M, Li K, Bai J, Van Damme R, Zhang W, Alba M, Stiles BL, Chen JF, Lu Z. A snoRNA-tRNA modification network governs codon-biased cellular states. Proc Natl Acad Sci U S A 2023; 120:e2312126120. [PMID: 37792516 PMCID: PMC10576143 DOI: 10.1073/pnas.2312126120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
The dynamic balance between tRNA supply and codon usage demand is a fundamental principle in the cellular translation economy. However, the regulation and functional consequences of this balance remain unclear. Here, we use PARIS2 interactome capture, structure modeling, conservation analysis, RNA-protein interaction analysis, and modification mapping to reveal the targets of hundreds of snoRNAs, many of which were previously considered orphans. We identify a snoRNA-tRNA interaction network that is required for global tRNA modifications, including 2'-O-methylation and others. Loss of Fibrillarin, the snoRNA-guided 2'-O-methyltransferase, induces global upregulation of tRNA fragments, a large group of regulatory RNAs. In particular, the snoRNAs D97/D133 guide the 2'-O-methylation of multiple tRNAs, especially for the amino acid methionine (Met), a protein-intrinsic antioxidant. Loss of D97/D133 snoRNAs in human HEK293 cells reduced target tRNA levels and induced codon adaptation of the transcriptome and translatome. Both single and double knockouts of D97 and D133 in HEK293 cells suppress Met-enriched proliferation-related gene expression programs, including, translation, splicing, and mitochondrial energy metabolism, and promote Met-depleted programs related to development, differentiation, and morphogenesis. In a mouse embryonic stem cell model of development, knockdown and knockout of D97/D133 promote differentiation to mesoderm and endoderm fates, such as cardiomyocytes, without compromising pluripotency, consistent with the enhanced development-related gene expression programs in human cells. This work solves a decades-old mystery about orphan snoRNAs and reveals a function of snoRNAs in controlling the codon-biased dichotomous cellular states of proliferation and development.
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA90089
| | - Kongpan Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA90089
| | - Jianhui Bai
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA90089
| | - Ryan Van Damme
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA90089
| | - Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA90089
| | - Mario Alba
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA90089
| | - Bangyan L. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA90089
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90089
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA90089
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA90089
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
2
|
Pichot F, Hogg MC, Marchand V, Bourguignon V, Jirström E, Farrell C, Gibriel HA, Prehn JH, Motorin Y, Helm M. Quantification of substoichiometric modification reveals global tsRNA hypomodification, preferences for angiogenin-mediated tRNA cleavage, and idiosyncratic epitranscriptomes of human neuronal cell-lines. Comput Struct Biotechnol J 2022; 21:401-417. [PMID: 36618980 PMCID: PMC9798144 DOI: 10.1016/j.csbj.2022.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Modification of tRNA is an integral part of the epitranscriptome with a particularly pronounced potential to generate diversity in RNA expression. Eukaryotic tRNA contains modifications in up to 20% of their nucleotides, but not all sites are always fully modified. Combinations and permutations of partially modified sites in tRNAs can generate a plethora of tRNA isoforms, termed modivariants. Here, we investigate the stoichiometry of incompletely modified sites in tRNAs from human cell lines for their information content. Using a panel of RNA modification mapping methods, we assess the stoichiometry of sites that contain the modifications 5-methylcytidine (m5C), 2'-O-ribose methylation (Nm), 3-methylcytidine (m3C), 7-methylguanosine (m7G), and Dihydrouridine (D). We discovered that up to 75% of sites can be incompletely modified and that the differential modification status of a cellular tRNA population holds information that allows to discriminate e.g. different cell lines. As a further aspect, we investigated potential causal connectivity between tRNA modification and its processing into tRNA fragments (tiRNAs and tRFs). Upon exposure of cultured living cells to cell-penetrating angiogenin, the modification patterns of the corresponding RNA populations was changed. Importantly, we also found that tsRNAs were significantly less modified than their parent tRNAs at numerous sites, suggesting that tsRNAs might derive chiefly from hypomodified tRNAs.
Collapse
Affiliation(s)
- Florian Pichot
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
- Université de Lorraine, CNRS, INSERM, IBSLor (UAR2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Marion C. Hogg
- Department of Physiology and Medical Physics and SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, IBSLor (UAR2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Valérie Bourguignon
- Université de Lorraine, CNRS, INSERM, IBSLor (UAR2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Elisabeth Jirström
- Department of Physiology and Medical Physics and SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Cliona Farrell
- Department of Physiology and Medical Physics and SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Hesham A. Gibriel
- Department of Physiology and Medical Physics and SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Jochen H.M. Prehn
- Department of Physiology and Medical Physics and SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, IBSLor (UAR2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
3
|
Arzumanian VA, Dolgalev GV, Kurbatov IY, Kiseleva OI, Poverennaya EV. Epitranscriptome: Review of Top 25 Most-Studied RNA Modifications. Int J Mol Sci 2022; 23:13851. [PMID: 36430347 PMCID: PMC9695239 DOI: 10.3390/ijms232213851] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The alphabet of building blocks for RNA molecules is much larger than the standard four nucleotides. The diversity is achieved by the post-transcriptional biochemical modification of these nucleotides into distinct chemical entities that are structurally and functionally different from their unmodified counterparts. Some of these modifications are constituent and critical for RNA functions, while others serve as dynamic markings to regulate the fate of specific RNA molecules. Together, these modifications form the epitranscriptome, an essential layer of cellular biochemistry. As of the time of writing this review, more than 300 distinct RNA modifications from all three life domains have been identified. However, only a few of the most well-established modifications are included in most reviews on this topic. To provide a complete overview of the current state of research on the epitranscriptome, we analyzed the extent of the available information for all known RNA modifications. We selected 25 modifications to describe in detail. Summarizing our findings, we describe the current status of research on most RNA modifications and identify further developments in this field.
Collapse
Affiliation(s)
- Viktoriia A. Arzumanian
- Correspondence: (V.A.A.); (G.V.D.); Tel.: +7-960-889-7117 (V.A.A.); +7-967-236-36-79 (G.V.D.)
| | - Georgii V. Dolgalev
- Correspondence: (V.A.A.); (G.V.D.); Tel.: +7-960-889-7117 (V.A.A.); +7-967-236-36-79 (G.V.D.)
| | | | | | | |
Collapse
|
4
|
Furlan M, Delgado-Tejedor A, Mulroney L, Pelizzola M, Novoa EM, Leonardi T. Computational methods for RNA modification detection from nanopore direct RNA sequencing data. RNA Biol 2021; 18:31-40. [PMID: 34559589 PMCID: PMC8677041 DOI: 10.1080/15476286.2021.1978215] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
The covalent modification of RNA molecules is a pervasive feature of all classes of RNAs and has fundamental roles in the regulation of several cellular processes. Mapping the location of RNA modifications transcriptome-wide is key to unveiling their role and dynamic behaviour, but technical limitations have often hampered these efforts. Nanopore direct RNA sequencing is a third-generation sequencing technology that allows the sequencing of native RNA molecules, thus providing a direct way to detect modifications at single-molecule resolution. Despite recent advances, the analysis of nanopore sequencing data for RNA modification detection is still a complex task that presents many challenges. Many works have addressed this task using different approaches, resulting in a large number of tools with different features and performances. Here we review the diverse approaches proposed so far and outline the principles underlying currently available algorithms.
Collapse
Affiliation(s)
- Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| | - Anna Delgado-Tejedor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Logan Mulroney
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| |
Collapse
|
5
|
Li J, Zhu WY, Yang WQ, Li CT, Liu RJ. The occurrence order and cross-talk of different tRNA modifications. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1423-1436. [PMID: 33881742 DOI: 10.1007/s11427-020-1906-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Chemical modifications expand the composition of RNA molecules from four standard nucleosides to over 160 modified nucleosides, which greatly increase the complexity and utility of RNAs. Transfer RNAs (tRNAs) are the most heavily modified cellular RNA molecules and contain the largest variety of modifications. Modification of tRNAs is pivotal for protein synthesis and also precisely regulates the noncanonical functions of tRNAs. Defects in tRNA modifications lead to numerous human diseases. Up to now, more than 100 types of modifications have been found in tRNAs. Intriguingly, some modifications occur widely on all tRNAs, while others only occur on a subgroup of tRNAs or even only a specific tRNA. The modification frequency of each tRNA is approximately 7% to 25%, with 5-20 modification sites present on each tRNA. The occurrence and modulation of tRNA modifications are specifically noticeable as plenty of interplays among different sites and modifications have been discovered. In particular, tRNA modifications are responsive to environmental changes, indicating their dynamic and highly organized nature. In this review, we summarized the known occurrence order, cross-talk, and cooperativity of tRNA modifications.
Collapse
Affiliation(s)
- Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
6
|
Marchand V, Bourguignon-Igel V, Helm M, Motorin Y. Mapping of 7-methylguanosine (m 7G), 3-methylcytidine (m 3C), dihydrouridine (D) and 5-hydroxycytidine (ho 5C) RNA modifications by AlkAniline-Seq. Methods Enzymol 2021; 658:25-47. [PMID: 34517949 DOI: 10.1016/bs.mie.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precise and reliable mapping of modified nucleotides in RNA is a challenging task in epitranscriptomics analysis. Only deep sequencing-based methods are able to provide both, a single-nucleotide resolution and sufficient selectivity and sensitivity. A number of protocols employing specific chemical reagents to distinguish modified RNA nucleotides from canonical parental residues have already proven their performance. We developed a deep-sequencing analytical pipeline for simultaneous detection of several modified nucleotides of different nature (methylation, hydroxylation, reduction) in RNA. The AlkAniline-Seq protocol uses intrinsic fragility of the N-glycosidic bond present in certain modified residues (7-methylguanosine (m7G), 3-methylcytidine (m3C), dihydrouridine (D) and 5-hydroxycytidine (ho5C)) to induce cleavage under heat combined with alkaline conditions. The resulting RNA abasic site is decomposed by aniline-driven β-elimination and creates a 5'-phosphate (5'-P) at the adjacent N+1 residue. This 5'-P is the crucial entry point for a highly selective ligation of sequencing adapters during the subsequent Illumina library preparation protocol. AlkAniline-Seq protocol has a very low background, and is both highly sensitive and specific. Applications of AlkAniline-Seq include mapping of m7G, m3C, D, and ho5C in variety of cellular RNAs, including in particular rRNAs and tRNAs.
Collapse
Affiliation(s)
- Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, Nancy, France
| | - Valérie Bourguignon-Igel
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, Nancy, France; Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core facility, Nancy, France; Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France.
| |
Collapse
|
7
|
van den Akker GGH, Zacchini F, Housmans BAC, van der Vloet L, Caron MMJ, Montanaro L, Welting TJM. Current Practice in Bicistronic IRES Reporter Use: A Systematic Review. Int J Mol Sci 2021; 22:5193. [PMID: 34068921 PMCID: PMC8156625 DOI: 10.3390/ijms22105193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bicistronic reporter assays have been instrumental for transgene expression, understanding of internal ribosomal entry site (IRES) translation, and identification of novel cap-independent translational elements (CITE). We observed a large methodological variability in the use of bicistronic reporter assays and data presentation or normalization procedures. Therefore, we systematically searched the literature for bicistronic IRES reporter studies and analyzed methodological details, data visualization, and normalization procedures. Two hundred fifty-seven publications were identified using our search strategy (published 1994-2020). Experimental studies on eukaryotic adherent cell systems and the cell-free translation assay were included for further analysis. We evaluated the following methodological details for 176 full text articles: the bicistronic reporter design, the cell line or type, transfection methods, and time point of analyses post-transfection. For the cell-free translation assay, we focused on methods of in vitro transcription, type of translation lysate, and incubation times and assay temperature. Data can be presented in multiple ways: raw data from individual cistrons, a ratio of the two, or fold changes thereof. In addition, many different control experiments have been suggested when studying IRES-mediated translation. In addition, many different normalization and control experiments have been suggested when studying IRES-mediated translation. Therefore, we also categorized and summarized their use. Our unbiased analyses provide a representative overview of bicistronic IRES reporter use. We identified parameters that were reported inconsistently or incompletely, which could hamper data reproduction and interpretation. On the basis of our analyses, we encourage adhering to a number of practices that should improve transparency of bicistronic reporter data presentation and improve methodological descriptions to facilitate data replication.
Collapse
Affiliation(s)
- Guus Gijsbertus Hubert van den Akker
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Federico Zacchini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
| | - Bas Adrianus Catharina Housmans
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Laura van der Vloet
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Marjolein Maria Johanna Caron
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, I-40138 Bologna, Italy; (F.Z.); (L.M.)
- Centro di Ricerca Biomedica Applicata—CRBA, Bologna University, Policlinico di Sant’Orsola, I-40138 Bologna, Italy
- Programma Dipartimentale in Medicina di Laboratorio, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
| | - Tim Johannes Maria Welting
- Department of Orthopedic Surgery, Maastricht University, Medical Center+, 6229 ER Maastricht, The Netherlands; (G.G.H.v.d.A.); (B.A.C.H.); (L.v.d.V.); (M.M.J.C.)
| |
Collapse
|
8
|
Non-Redundant tRNA Reference Sequences for Deep Sequencing Analysis of tRNA Abundance and Epitranscriptomic RNA Modifications. Genes (Basel) 2021; 12:genes12010081. [PMID: 33435213 PMCID: PMC7827920 DOI: 10.3390/genes12010081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
Analysis of RNA by deep-sequencing approaches has found widespread application in modern biology. In addition to measurements of RNA abundance under various physiological conditions, such techniques are now widely used for mapping and quantification of RNA modifications. Transfer RNA (tRNA) molecules are among the frequent targets of such investigation, since they contain multiple modified residues. However, the major challenge in tRNA examination is related to a large number of duplicated and point-mutated genes encoding those RNA molecules. Moreover, the existence of multiple isoacceptors/isodecoders complicates both the analysis and read mapping. Existing databases for tRNA sequencing provide near exhaustive listings of tRNA genes, but the use of such highly redundant reference sequences in RNA-seq analyses leads to a large number of ambiguously mapped sequencing reads. Here we describe a relatively simple computational strategy for semi-automatic collapsing of highly redundant tRNA datasets into a non-redundant collection of reference tRNA sequences. The relevance of the approach was validated by analysis of experimentally obtained tRNA-sequencing datasets for different prokaryotic and eukaryotic model organisms. The data demonstrate that non-redundant tRNA reference sequences allow improving unambiguous mapping of deep sequencing data.
Collapse
|
9
|
Galvanin A, Vogt LM, Grober A, Freund I, Ayadi L, Bourguignon-Igel V, Bessler L, Jacob D, Eigenbrod T, Marchand V, Dalpke A, Helm M, Motorin Y. Bacterial tRNA 2'-O-methylation is dynamically regulated under stress conditions and modulates innate immune response. Nucleic Acids Res 2020; 48:12833-12844. [PMID: 33275131 PMCID: PMC7736821 DOI: 10.1093/nar/gkaa1123] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
RNA modifications are a well-recognized way of gene expression regulation at the post-transcriptional level. Despite the importance of this level of regulation, current knowledge on modulation of tRNA modification status in response to stress conditions is far from being complete. While it is widely accepted that tRNA modifications are rather dynamic, such variations are mostly assessed in terms of total tRNA, with only a few instances where changes could be traced to single isoacceptor species. Using Escherichia coli as a model system, we explored stress-induced modulation of 2'-O-methylations in tRNAs by RiboMethSeq. This analysis and orthogonal analytical measurements by LC-MS show substantial, but not uniform, increase of the Gm18 level in selected tRNAs under mild bacteriostatic antibiotic stress, while other Nm modifications remain relatively constant. The absence of Gm18 modification in tRNAs leads to moderate alterations in E. coli mRNA transcriptome, but does not affect polysomal association of mRNAs. Interestingly, the subset of motility/chemiotaxis genes is significantly overexpressed in ΔTrmH mutant, this corroborates with increased swarming motility of the mutant strain. The stress-induced increase of tRNA Gm18 level, in turn, reduced immunostimulation properties of bacterial tRNAs, which is concordant with the previous observation that Gm18 is a suppressor of Toll-like receptor 7 (TLR7)-mediated interferon release. This documents an effect of stress induced modulation of tRNA modification that acts outside protein translation.
Collapse
Affiliation(s)
- Adeline Galvanin
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Lea-Marie Vogt
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Antonia Grober
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, 01307 Dresden, Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69117 Heidelberg, Germany
| | - Lilia Ayadi
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Valerie Bourguignon-Igel
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Larissa Bessler
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Dominik Jacob
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69117 Heidelberg, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Alexander Dalpke
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| |
Collapse
|
10
|
Accornero F, Ross RL, Alfonzo JD. From canonical to modified nucleotides: balancing translation and metabolism. Crit Rev Biochem Mol Biol 2020; 55:525-540. [PMID: 32933330 DOI: 10.1080/10409238.2020.1818685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Every type of nucleic acid in cells may undergo some kind of post-replicative or post-transcriptional chemical modification. Recent evidence has highlighted their importance in biology and their chemical complexity. In the following pages, we will describe new discoveries of modifications, with a focus on tRNA and mRNA. We will highlight current challenges and advances in modification detection and we will discuss how changes in nucleotide post-transcriptional modifications may affect cell homeostasis leading to malfunction. Although, RNA modifications prevail in all forms of life, the present review will focus on eukaryotic systems, where the great degree of intracellular compartmentalization provides barriers and filters for the level at which a given RNA is modified and will of course affect its fate and function. Additionally, although we will mention rRNA modification and modifications of the mRNA 5'-CAP structure, this will only be discussed in passing, as many substantive reviews have been written on these subjects. Here we will not spend much time describing all the possible modifications that have been observed; truly a daunting task. For reference, Bujnicki and coworkers have created MODOMICS, a useful repository for all types of modifications and their associated enzymes. Instead we will discuss a few examples, which illustrate our arguments on the connection of modifications, metabolism and ultimately translation. The fact remains, a full understanding of the long reach of nucleic acid modifications in cells requires both a global and targeted study of unprecedented scale, which at the moment may well be limited only by technology.
Collapse
Affiliation(s)
- Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Robert L Ross
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Freund I, Buhl DK, Boutin S, Kotter A, Pichot F, Marchand V, Vierbuchen T, Heine H, Motorin Y, Helm M, Dalpke AH, Eigenbrod T. 2'- O-methylation within prokaryotic and eukaryotic tRNA inhibits innate immune activation by endosomal Toll-like receptors but does not affect recognition of whole organisms. RNA (NEW YORK, N.Y.) 2019; 25:869-880. [PMID: 31019095 PMCID: PMC6573781 DOI: 10.1261/rna.070243.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/20/2019] [Indexed: 05/10/2023]
Abstract
Bacterial RNA has emerged as an important activator of innate immune responses by stimulating Toll-like receptors TLR7 and TLR8 in humans. Guanosine 2'-O-methylation at position 18 (Gm18) in bacterial tRNA was shown to antagonize tRNA-induced TLR7/8 activation, suggesting a potential role of Gm18 as an immune escape mechanism. This modification also occurs in eukaryotic tRNA, yet a physiological immune function remained to be tested. We therefore set out to investigate the immune modulatory role of Gm18 in both prokaryotic and eukaryotic microorganisms, Escherichia coli and Saccharomyces cerevisiae, and in human cells. Using RiboMethSeq analysis we show that mutation of trmH in E. coli, trm3 in S. cereviase, and CRISPR/Cas9-induced knockout of TARBP1 in H. sapiens results in loss of Gm18 within tRNA. Lack of Gm18 across the kingdoms resulted in increased immunostimulation of peripheral blood mononuclear cells when activated by tRNA preparations. In E. coli, lack of 2'-O-methyltransferase trmH also enhanced immune stimulatory properties by whole cellular RNA. In contrast, lack of Gm18 in yeasts and human cells did not affect immunostimulation by whole RNA preparations. When using live E. coli bacteria, lack of trmH did not affect overall immune stimulation although we detected a defined TLR8/RNA-dependent gene expression signature upon E. coli infection. Together, these results demonstrate that Gm18 is a global immune inhibitory tRNA modification across the kingdoms and contributes to tRNA recognition by innate immune cells, but as an individual modification has insufficient potency to modulate recognition of the investigated microorganisms.
Collapse
Affiliation(s)
- Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Daniel K Buhl
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Florian Pichot
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
- IMoPA UMR7365 CNRS-Lorraine University, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Virginie Marchand
- UMS2008 IBSLor, CNRS-Lorraine University-INSERM, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Tim Vierbuchen
- Division of Innate Immunity, Research Center Borstel, 23845 Borstel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, 23845 Borstel, Germany
| | - Yuri Motorin
- IMoPA UMR7365 CNRS-Lorraine University, BioPole Lorraine University, 54500 Vandoeuvre-les-Nancy, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Medical Microbiology and Hygiene, Technical University Dresden, 01307 Dresden, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|