1
|
Riyaz Z, Khan ST. Nitrogen fixation by methanogenic Archaea, literature review and DNA database-based analysis; significance in face of climate change. Arch Microbiol 2024; 207:6. [PMID: 39611976 DOI: 10.1007/s00203-024-04191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/30/2024]
Abstract
Archaea represents a significant population of up to 10% in soil microbial communities. The role of Archaea in soil is often overlooked mainly due to its unculturability. Among the three domains of life biological nitrogen fixation (BNF) is mainly a trait of Eubacteria and some Archaea. Archaea mediated processes like BNF may become even more important in the face of global Climate change. Although there are reports on nitrogen fixation by Archaea, to best of our knowledge there is no comprehensive report on BNF by Archaea under environmental stresses typical to climate change. Here we report a survey of literature and DNA database to study N2-fixation among Archaea. A total of 37 Archaea belonging to Methanogens of the phylum Euryarchaeota within the class Methanococcus, Methanomicrobia Methanobacteria, and Methanotrophic ANME2 lineages either contain genes for BNF or are known to fix atmospheric N2. Archaea were found to have their nif genes arranged as clusters of 6-8 genes in a single operon. The genes code for commonly found Mo-nitrogenase while in some archaea the genes for alternative metal nitrogenases like vnf were also found. The nifHDK gene similarity matrices show that Archaea shared the highest similarity with the nifHDK gene of anaerobic Clostridium beijerinckii. Although there are various theories about the origin of N2-fixation in Archaea, the most acceptable is the origin of N2-fixation first in bacteria and its subsequent transfer to Archaea. Since Archaea can survive under extreme environmental conditions their role in BNF should be studied especially in soil under environmental stress.
Collapse
Affiliation(s)
- Zubia Riyaz
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Shams Tabrez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
2
|
Harris DF, Rucker HR, Garcia AK, Yang ZY, Chang SD, Feinsilber H, Kaçar B, Seefeldt LC. Ancient nitrogenases are ATP dependent. mBio 2024; 15:e0127124. [PMID: 38869277 PMCID: PMC11253609 DOI: 10.1128/mbio.01271-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
Life depends on a conserved set of chemical energy currencies that are relics of early biochemistry. One of these is ATP, a molecule that, when paired with a divalent metal ion such as Mg2+, can be hydrolyzed to support numerous cellular and molecular processes. Despite its centrality to extant biochemistry, it is unclear whether ATP supported the function of ancient enzymes. We investigate the evolutionary necessity of ATP by experimentally reconstructing an ancestral variant of the N2-reducing enzyme nitrogenase. The Proterozoic ancestor is predicted to be ~540-2,300 million years old, post-dating the Great Oxidation Event. Growth rates under nitrogen-fixing conditions are ~80% of those of wild type in Azotobacter vinelandii. In the extant enzyme, the hydrolysis of two MgATP is coupled to electron transfer to support substrate reduction. The ancestor has a strict requirement for ATP with no other nucleotide triphosphate analogs (GTP, ITP, and UTP) supporting activity. Alternative divalent metal ions (Fe2+, Co2+, and Mn2+) support activity with ATP but with diminished activities compared to Mg2+, similar to the extant enzyme. Additionally, it is shown that the ancestor has an identical efficiency in ATP hydrolyzed per electron transferred to the extant of two. Our results provide direct laboratory evidence of ATP usage by an ancient enzyme.IMPORTANCELife depends on energy-carrying molecules to power many sustaining processes. There is evidence that these molecules may predate the rise of life on Earth, but how and when these dependencies formed is unknown. The resurrection of ancient enzymes provides a unique tool to probe the enzyme's function and usage of energy-carrying molecules, shedding light on their biochemical origins. Through experimental reconstruction, this research investigates the ancestral dependence of a nitrogen-fixing enzyme on the energy carrier ATP, a requirement for function in the modern enzyme. We show that the resurrected ancestor does not have generalist nucleotide specificity. Rather, the ancestor has a strict requirement for ATP, like the modern enzyme, with similar function and efficiency. The findings elucidate the early-evolved necessity of energy-yielding molecules, delineating their role in ancient biochemical processes. Ultimately, these insights contribute to unraveling the intricate tapestry of evolutionary biology and the origins of life-sustaining dependencies.
Collapse
Affiliation(s)
- Derek F. Harris
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Holly R. Rucker
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Amanda K. Garcia
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Scott D. Chang
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hannah Feinsilber
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| |
Collapse
|
3
|
Warmack RA, Wenke BB, Spatzal T, Rees DC. Anaerobic cryoEM protocols for air-sensitive nitrogenase proteins. Nat Protoc 2024; 19:2026-2051. [PMID: 38575747 PMCID: PMC11528890 DOI: 10.1038/s41596-024-00973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/11/2024] [Indexed: 04/06/2024]
Abstract
Single-particle cryo-electron microscopy (cryoEM) provides an attractive avenue for advancing our atomic resolution understanding of materials, molecules and living systems. However, the vast majority of published cryoEM methodologies focus on the characterization of aerobically purified samples. Air-sensitive enzymes and microorganisms represent important yet understudied systems in structural biology. We have recently demonstrated the success of an anaerobic single-particle cryoEM workflow applied to the air-sensitive nitrogenase enzymes. In this protocol, we detail the use of Schlenk lines and anaerobic chambers to prepare samples, including a protein tag for monitoring sample exposure to oxygen in air. We describe how to use a plunge freezing apparatus inside of a soft-sided vinyl chamber of the type we routinely use for anaerobic biochemistry and crystallography of oxygen-sensitive proteins. Manual control of the airlock allows for introduction of liquid cryogens into the tent. A custom vacuum port provides slow, continuous evacuation of the tent atmosphere to avoid accumulation of flammable vapors within the enclosed chamber. These methods allowed us to obtain high-resolution structures of both nitrogenase proteins using single-particle cryoEM. The procedures involved can be generally subdivided into a 4 d anaerobic sample generation procedure, and a 1 d anaerobic cryoEM sample preparation step, followed by conventional cryoEM imaging and processing steps. As nitrogen is a substrate for nitrogenase, the Schlenk lines and anaerobic chambers described in this procedure are operated under an argon atmosphere; however, the system and these procedures are compatible with other controlled gas environments.
Collapse
Affiliation(s)
- Rebeccah A Warmack
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| | - Belinda B Wenke
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thomas Spatzal
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Cuevas-Zuviría B, Garcia AK, Rivier AJ, Rucker HR, Carruthers BM, Kaçar B. Emergence of an Orphan Nitrogenase Protein Following Atmospheric Oxygenation. Mol Biol Evol 2024; 41:msae067. [PMID: 38526235 PMCID: PMC11018506 DOI: 10.1093/molbev/msae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Molecular innovations within key metabolisms can have profound impacts on element cycling and ecological distribution. Yet, much of the molecular foundations of early evolved enzymes and metabolisms are unknown. Here, we bring one such mystery to relief by probing the birth and evolution of the G-subunit protein, an integral component of certain members of the nitrogenase family, the only enzymes capable of biological nitrogen fixation. The G-subunit is a Paleoproterozoic-age orphan protein that appears more than 1 billion years after the origin of nitrogenases. We show that the G-subunit arose with novel nitrogenase metal dependence and the ecological expansion of nitrogen-fixing microbes following the transition in environmental metal availabilities and atmospheric oxygenation that began ∼2.5 billion years ago. We identify molecular features that suggest early G-subunit proteins mediated cofactor or protein interactions required for novel metal dependency, priming ancient nitrogenases and their hosts to exploit these newly diversified geochemical environments. We further examined the degree of functional specialization in G-subunit evolution with extant and ancestral homologs using laboratory reconstruction experiments. Our results indicate that permanent recruitment of the orphan protein depended on the prior establishment of conserved molecular features and showcase how contingent evolutionary novelties might shape ecologically important microbial innovations.
Collapse
Affiliation(s)
| | - Amanda K Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alex J Rivier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Holly R Rucker
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brooke M Carruthers
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Russell SJ, Garcia AK, Kaçar B. A CRISPR interference system for engineering biological nitrogen fixation. mSystems 2024; 9:e0015524. [PMID: 38376168 PMCID: PMC10949490 DOI: 10.1128/msystems.00155-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
A grand challenge for the next century is in facing a changing climate through bioengineering solutions. Biological nitrogen fixation, the globally consequential, nitrogenase-catalyzed reduction of atmospheric nitrogen to bioavailable ammonia, is a vital area of focus. Nitrogen fixation engineering relies upon extensive understanding of underlying genetics in microbial models, including the broadly utilized gammaproteobacterium, Azotobacter vinelandii (A. vinelandii). Here, we report the first CRISPR interference (CRISPRi) system for targeted gene silencing in A. vinelandii that integrates genomically via site-specific transposon insertion. We demonstrate that CRISPRi can repress transcription of an essential nitrogen fixation gene by ~60%. Further, we show that nitrogenase genes are suitably expressed from the transposon insertion site, indicating that CRISPRi and engineered nitrogen fixation genes can be co-integrated for combinatorial studies of gene expression and engineering. Our established CRISPRi system fills an important gap for engineering microbial nitrogen fixation for desired purposes.IMPORTANCEAll life on Earth requires nitrogen to survive. About 78% of the atmosphere alone is nitrogen, yet humans cannot use it directly. Instead, we obtain the nitrogen we need for our survival through the food we eat. For more than 100 years, a substantial portion of agricultural productivity has relied on industrial methods for nitrogen fertilizer synthesis, which consumes significant amounts of nonrenewable energy resources and exacerbates environmental degradation and human-induced climate change. Promising alternatives to these industrial methods rely on engineering the only biological pathway for generating bioaccessible nitrogen: microbial nitrogen fixation. Bioengineering strategies require an extensive understanding of underlying genetics in nitrogen-fixing microbes, but genetic tools for this critical goal remain lacking. The CRISPRi gene silencing system that we report, developed in the broadly utilized nitrogen-fixing bacterial model, Azotobacter vinelandii, is an important step toward elucidating the complexity of nitrogen fixation genetics and enabling their manipulation.
Collapse
Affiliation(s)
- Steven J. Russell
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amanda K. Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Kulakowski S, Rivier A, Kuo R, Mengel S, Eng T. Development of modular expression across phylogenetically distinct diazotrophs. J Ind Microbiol Biotechnol 2024; 51:kuae033. [PMID: 39257030 PMCID: PMC11537724 DOI: 10.1093/jimb/kuae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Diazotrophic bacteria can reduce atmospheric nitrogen into ammonia enabling bioavailability of the essential element. Many diazotrophs closely associate with plant roots increasing nitrogen availability, acting as plant growth promoters. These associations have the potential to reduce the need for costly synthetic fertilizers if they could be engineered for agricultural applications. However, despite the importance of diazotrophic bacteria, genetic tools are poorly developed in a limited number of species, in turn narrowing the crops and root microbiomes that can be targeted. Here, we report optimized protocols and plasmids to manipulate phylogenetically diverse diazotrophs with the goal of enabling synthetic biology and genetic engineering. Three broad-host-range plasmids can be used across multiple diazotrophs, with the identification of one specific plasmid (containing origin of replication RK2 and a kanamycin resistance marker) showing the highest degree of compatibility across bacteria tested. We then demonstrated modular expression by testing seven promoters and eleven ribosomal binding sites using proxy fluorescent proteins. Finally, we tested four small molecule inducible systems to report expression in three diazotrophs and demonstrated genome editing in Klebsiella michiganensis M5al. ONE-SENTENCE SUMMARY In this study, broad-host plasmids and synthetic genetic parts were leveraged to enable expression tools in a library of diazotrophic bacteria.
Collapse
Affiliation(s)
- Shawn Kulakowski
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Rivier
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rita Kuo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sonya Mengel
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas Eng
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Einsle O. On the Shoulders of Giants-Reaching for Nitrogenase. Molecules 2023; 28:7959. [PMID: 38138449 PMCID: PMC10745432 DOI: 10.3390/molecules28247959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Only a single enzyme system-nitrogenase-carries out the conversion of atmospheric N2 into bioavailable ammonium, an essential prerequisite for all organismic life. The reduction of this inert substrate at ambient conditions poses unique catalytic challenges that strain our mechanistic understanding even after decades of intense research. Structural biology has added its part to this greater tapestry, and in this review, I provide a personal (and highly biased) summary of the parts of the story to which I had the privilege to contribute. It focuses on the crystallographic analysis of the three isoforms of nitrogenases at high resolution and the binding of ligands and inhibitors to the active-site cofactors of the enzyme. In conjunction with the wealth of available biochemical, biophysical, and spectroscopic data on the protein, this has led us to a mechanistic hypothesis based on an elementary mechanism of repetitive hydride formation and insertion.
Collapse
Affiliation(s)
- Oliver Einsle
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
8
|
Garcia AK, Harris DF, Rivier AJ, Carruthers BM, Pinochet-Barros A, Seefeldt LC, Kaçar B. Nitrogenase resurrection and the evolution of a singular enzymatic mechanism. eLife 2023; 12:e85003. [PMID: 36799917 PMCID: PMC9977276 DOI: 10.7554/elife.85003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
The planetary biosphere is powered by a suite of key metabolic innovations that emerged early in the history of life. However, it is unknown whether life has always followed the same set of strategies for performing these critical tasks. Today, microbes access atmospheric sources of bioessential nitrogen through the activities of just one family of enzymes, nitrogenases. Here, we show that the only dinitrogen reduction mechanism known to date is an ancient feature conserved from nitrogenase ancestors. We designed a paleomolecular engineering approach wherein ancestral nitrogenase genes were phylogenetically reconstructed and inserted into the genome of the diazotrophic bacterial model, Azotobacter vinelandii, enabling an integrated assessment of both in vivo functionality and purified nitrogenase biochemistry. Nitrogenase ancestors are active and robust to variable incorporation of one or more ancestral protein subunits. Further, we find that all ancestors exhibit the reversible enzymatic mechanism for dinitrogen reduction, specifically evidenced by hydrogen inhibition, which is also exhibited by extant A. vinelandii nitrogenase isozymes. Our results suggest that life may have been constrained in its sampling of protein sequence space to catalyze one of the most energetically challenging biochemical reactions in nature. The experimental framework established here is essential for probing how nitrogenase functionality has been shaped within a dynamic, cellular context to sustain a globally consequential metabolism.
Collapse
Affiliation(s)
- Amanda K Garcia
- Department of Bacteriology, University of Wisconsin–MadisonMadisonUnited States
| | - Derek F Harris
- Department of Chemistry and Biochemistry, Utah State UniversityLoganUnited States
| | - Alex J Rivier
- Department of Bacteriology, University of Wisconsin–MadisonMadisonUnited States
| | - Brooke M Carruthers
- Department of Bacteriology, University of Wisconsin–MadisonMadisonUnited States
| | | | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State UniversityLoganUnited States
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin–MadisonMadisonUnited States
| |
Collapse
|
9
|
Molecular Mechanism and Agricultural Application of the NifA-NifL System for Nitrogen Fixation. Int J Mol Sci 2023; 24:ijms24020907. [PMID: 36674420 PMCID: PMC9866876 DOI: 10.3390/ijms24020907] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Nitrogen-fixing bacteria execute biological nitrogen fixation through nitrogenase, converting inert dinitrogen (N2) in the atmosphere into bioavailable nitrogen. Elaborating the molecular mechanisms of orderly and efficient biological nitrogen fixation and applying them to agricultural production can alleviate the "nitrogen problem". Azotobacter vinelandii is a well-established model bacterium for studying nitrogen fixation, utilizing nitrogenase encoded by the nif gene cluster to fix nitrogen. In Azotobacter vinelandii, the NifA-NifL system fine-tunes the nif gene cluster transcription by sensing the redox signals and energy status, then modulating nitrogen fixation. In this manuscript, we investigate the transcriptional regulation mechanism of the nif gene in autogenous nitrogen-fixing bacteria. We discuss how autogenous nitrogen fixation can better be integrated into agriculture, providing preliminary comprehensive data for the study of autogenous nitrogen-fixing regulation.
Collapse
|
10
|
Carruthers BM, Garcia AK, Rivier A, Kacar B. Automated Laboratory Growth Assessment and Maintenance of Azotobacter vinelandii. Curr Protoc 2021; 1:e57. [PMID: 33656286 DOI: 10.1002/cpz1.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Azotobacter vinelandii (A. vinelandii) is a commonly used model organism for the study of aerobic respiration, the bacterial production of several industrially relevant compounds, and, perhaps most significantly, the genetics and biochemistry of biological nitrogen fixation. Laboratory growth assessments of A. vinelandii are useful for evaluating the impact of environmental and genetic modifications on physiological properties, including diazotrophy. However, researchers typically rely on manual growth methods that are oftentimes laborious and inefficient. We present a protocol for the automated growth assessment of A. vinelandii on a microplate reader, particularly well-suited for studies of diazotrophic growth. We discuss common pitfalls and strategies for protocol optimization, and demonstrate the protocol's application toward growth evaluation of strains carrying modifications to nitrogen-fixation genes. © 2021 The Authors. Basic Protocol 1: Preparation of A. vinelandii plate cultures from frozen stock Basic Protocol 2: Preparation of A. vinelandii liquid precultures Basic Protocol 3: Automated growth rate experiment of A. vinelandii on a microplate reader.
Collapse
Affiliation(s)
- Brooke M Carruthers
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Amanda K Garcia
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Alex Rivier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Betul Kacar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona.,Department of Astronomy and Steward Observatory, University of Arizona, Tucson, Arizona.,Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona
| |
Collapse
|