1
|
Obeagu EI, Obeagu GU. Predictive models and biomarkers for survival in stage III breast cancer: a review of clinical applications and future directions. Ann Med Surg (Lond) 2024; 86:5980-5987. [PMID: 39359789 PMCID: PMC11444610 DOI: 10.1097/ms9.0000000000002517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Stage III breast cancer, characterized by locally advanced tumors and potential regional lymph node involvement, presents a formidable challenge to both patients and healthcare professionals. Accurate prediction of survival outcomes is crucial for guiding treatment decisions and optimizing patient care. This publication explores the potential clinical utility of predictive tools, encompassing genetic markers, imaging techniques, and clinical parameters, to improve survival outcome predictions in stage III breast cancer. Multimodal approaches, integrating these tools, hold the promise of delivering more precise and personalized predictions. Despite the inherent challenges, such as data standardization and genetic heterogeneity, the future offers opportunities for refinement, driven by precision medicine, artificial intelligence, and global collaboration. The goal is to empower healthcare providers to make informed treatment decisions, ultimately leading to improved survival outcomes and a brighter horizon for individuals facing this challenging disease.
Collapse
|
2
|
Raei M, Heydari K, Tabarestani M, Razavi A, Mirshafiei F, Esmaeily F, Taheri M, Hoseini A, Nazari H, Shamshirian D, Alizadeh-Navaei R. Diagnostic accuracy of ESR1 mutation detection by cell-free DNA in breast cancer: a systematic review and meta-analysis of diagnostic test accuracy. BMC Cancer 2024; 24:908. [PMID: 39069608 DOI: 10.1186/s12885-024-12674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Estrogen receptors express in nearly 70% of breast cancers (ER-positive). Estrogen receptor alpha plays a fundamental role as a significant factor in breast cancer progression for the early selection of therapeutic approaches. Accordingly, there has been a surge of attention to non-invasive techniques, including circulating Cell-free DNA (ccfDNA) or Cell-Free DNA (cfDNA), to detect and track ESR1 genotype. Therefore, this study aimed to examine the diagnosis accuracy of ESR1 mutation detection by cell-free DNA in breast cancer patientsthrough a systematic review and comprehensive meta-analysis. METHODS PubMed, Embase, and Web of Science databases were searched up to 6 April 2022. Diagnostic studies on ESR1 measurement by cfDNA, which was confirmed using the tumour tissue biopsy, have been included in the study. The sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were considered to analyse the data. RESULTS Out of 649 papers, 13 papers with 15 cohorts, including 389 participants, entered the meta-analyses. The comprehensive meta-analysis indicated a high sensitivity (75.52, 95% CI 60.19-90.85), specificity (88.20, 95% CI 80.99-95.40), and high accuracy of 88.96 (95% CI 83.23-94.69) for plasma ESR1. We also found a moderate PPV of 56.94 (95% CI 41.70-72.18) but a high NPV of 88.53 (95% CI 82.61-94.44). We also found an NLR of 0.443 (95% CI 0.09-0.79) and PLR of 1.60 (95% CI 1.20-1.99). CONCLUSION This systematic review and comprehensive meta-analysis reveal that plasma cfDNA testing exhibits high sensitivity and specificity in detecting ESR1 mutations in breast cancer patients. This suggests that the test could be a valuable diagnostic tool. It may serve as a dependable and non-invasive technique for identifying ESR1 mutations in breast cancer patients. However, more extensive research is needed to confirm its prognostic value.
Collapse
Affiliation(s)
- Maedeh Raei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Moallem Sq, Sari, Sari, 44817844718, Iran
| | - Keyvan Heydari
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Moallem Sq, Sari, Sari, 44817844718, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Tabarestani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Razavi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Mirshafiei
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Esmaeily
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Taheri
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Aref Hoseini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Danial Shamshirian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Moallem Sq, Sari, Sari, 44817844718, Iran.
| |
Collapse
|
3
|
Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken) 2023; 6:e1764. [PMID: 36607830 PMCID: PMC9940009 DOI: 10.1002/cnr2.1764] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cancer is characterized by the rampant proliferation, growth, and infiltration of malignantly transformed cancer cells past their normal boundaries into adjacent tissues. It is the leading cause of death worldwide, responsible for approximately 19.3 million new diagnoses and 10 million deaths globally in 2020. In the United States alone, the estimated number of new diagnoses and deaths is 1.9 million and 609 360, respectively. Implementation of currently existing cancer diagnostic techniques such as positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance spectroscopy (MRS), and molecular diagnostic techniques, have enabled early detection rates and are instrumental not only for the therapeutic management of cancer patients, but also for early detection of the cancer itself. The effectiveness of these cancer screening programs are heavily dependent on the rate of accurate precursor lesion identification; an increased rate of identification allows for earlier onset treatment, thus decreasing the incidence of invasive cancer in the long-term, and improving the overall prognosis. Although these diagnostic techniques are advantageous due to lack of invasiveness and easier accessibility within the clinical setting, several limitations such as optimal target definition, high signal to background ratio and associated artifacts hinder the accurate diagnosis of specific types of deep-seated tumors, besides associated high cost. In this review we discuss various imaging, molecular, and low-cost diagnostic tools and related technological advancements, to provide a better understanding of cancer diagnostics, unraveling new opportunities for effective management of cancer, particularly in low- and middle-income countries (LMICs). RECENT FINDINGS Herein we discuss various technological advancements that are being utilized to construct an assortment of new diagnostic techniques that incorporate hardware, image reconstruction software, imaging devices, biomarkers, and even artificial intelligence algorithms, thereby providing a reliable diagnosis and analysis of the tumor. Also, we provide a brief account of alternative low cost-effective cancer therapy devices (CryoPop®, LumaGEM®, MarginProbe®) and picture archiving and communication systems (PACS), emphasizing the need for multi-disciplinary collaboration among radiologists, pathologists, and other involved specialties for improving cancer diagnostics. CONCLUSION Revolutionary technological advancements in cancer imaging and molecular biology techniques are indispensable for the accurate diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Akhil Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Anika Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Bilikere S. Dwarakanath
- Central Research FacilitySri Ramachandra Institute of Higher Education and Research PorurChennaiIndia
- Department of BiotechnologyIndian Academy Degree CollegeBangaloreIndia
| | | | - Rao V. L. Papineni
- PACT & Health LLCBranfordConnecticutUSA
- Department of SurgeryUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
4
|
Luo T, Kang Y, Liu Y, Li J, Li J. Small extracellular vesicles in breast cancer brain metastasis and the prospect of clinical application. Front Bioeng Biotechnol 2023; 11:1162089. [PMID: 37091342 PMCID: PMC10113431 DOI: 10.3389/fbioe.2023.1162089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale extracellular particles that have received widespread scientific attention for carrying a variety of biomolecules such as nucleic acids and proteins and participating in the process of intercellular information exchange, making them become a research hotspot due to their potential diagnostic value. Breast cancer is the leading cause of cancer-related death in women, approximately 90% of patient deaths are due to metastasis complications. Brain metastasis is an important cause of mortality in breast cancer patients, about 10-15% of breast cancer patients will develop brain metastasis. Therefore, early prevention of brain metastasis and the development of new treatments are crucial. Small EVs have been discovered to be involved in the entire process of breast cancer brain metastasis (BCBM), playing an important role in driving organ-specific metastasis, forming pre-metastatic niches, disrupting the blood-brain barrier, and promoting metastatic tumor cell proliferation. We summarize the mechanisms of small EVs in the aforementioned pathological processes at the cellular and molecular levels, and anticipate their potential applications in the treatment of breast cancer brain metastasis, with the hope of providing new ideas for the precise treatment of breast cancer brain metastasis.
Collapse
|
5
|
Mukherjee A, Bisht B, Dutta S, Paul MK. Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy. Acta Pharmacol Sin 2022; 43:2759-2776. [PMID: 35379933 PMCID: PMC9622806 DOI: 10.1038/s41401-022-00902-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/15/2022] [Indexed: 12/17/2022] Open
Abstract
Three major approaches of cancer therapy can be enunciated as delivery of biotherapeutics, tumor image analysis, and immunotherapy. Liposomes, artificial fat bubbles, are long known for their capacity to encapsulate a diverse range of bioactive molecules and release the payload in a sustained, stimuli-responsive manner. They have already been widely explored as a delivery vehicle for therapeutic drugs as well as imaging agents. They are also extensively being used in cancer immunotherapy. On the other hand, exosomes are naturally occurring nanosized extracellular vesicles that serve an important role in cell-cell communication. Importantly, the exosomes also have proven their capability to carry an array of active pharmaceuticals and diagnostic molecules to the tumor cells. Exosomes, being enriched with tumor antigens, have numerous immunomodulatory effects. Much to our intrigue, in recent times, efforts have been directed toward developing smart, bioengineered, exosome-liposome hybrid nanovesicles, which are augmented by the benefits of both vesicular systems. This review attempts to summarize the contemporary developments in the use of exosome and liposome toward cancer diagnosis, therapy, as a vehicle for drug delivery, diagnostic carrier for tumor imaging, and cancer immunotherapy. We shall also briefly reflect upon the recent advancements of the exosome-liposome hybrids in cancer therapy. Finally, we put forward future directions for the use of exosome/liposome and/or hybrid nanocarriers for accurate diagnosis and personalized therapies for cancers.
Collapse
Affiliation(s)
| | - Bharti Bisht
- Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, 700156, India
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Recent advances in integrated microfluidics for liquid biopsies and future directions. Biosens Bioelectron 2022; 217:114715. [PMID: 36174359 DOI: 10.1016/j.bios.2022.114715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022]
Abstract
Liquid biopsies have piqued the interest of researchers as a new tumor diagnosis technique due to their unique benefits of non-invasiveness, sensitivity, and convenience. Recent advances in microfluidic technology have integrated separation, purification, and detection, allowing for high-throughput, high-sensitivity, and high-controllability detection of specific biomarkers in liquid biopsies. With the increasing demand for tumor detection and individualized treatment, new challenges are emerging for the ever-improving microfluidic technology. The state-of-the-art microfluidic design and fabrications have been reviewed in this manuscript, and how this technology can be applied to liquid biopsies from the point of view of the detection process. The primary discussion objectives are circulating tumor cells (CTCs), exosomes, and circulating nucleic acid (ctDNA). Furthermore, the challenges and future direction of microfluidic technology in detecting liquid biomarkers have been discussed.
Collapse
|
7
|
Ozturk EA, Caner A. Liquid Biopsy for Promising Non-invasive Diagnostic Biomarkers in Parasitic Infections. Acta Parasitol 2022; 67:1-17. [PMID: 34176040 DOI: 10.1007/s11686-021-00444-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Liquid biopsy refers to the sampling and molecular analysis of body fluids such as blood, saliva, and urine in contrast to conventional tissue biopsies. Liquid biopsy approach can offer powerful non-invasive biomarkers (circulating markers) for diagnosis and monitoring treatment response of a variety of diseases, including parasitic infections. METHODS In this review, we concentrate on cell-free DNA (cfDNA), microRNA (miRNA), and exosomes in the published literature. RESULTS Considering the high prevalence and severity of parasitic infections worldwide, circulating biomarkers can provide a new insight into the diagnosis and prognosis of parasites in the near future. Moreover, identifying and characterizing parasite- or host-derived circulating markers are important for a better understanding of the pathogenesis of parasite infection and host-parasite relationship at the molecular level. Profiling of biomarkers for parasitic diseases is a promising potential field, though further studies and optimization strategies are required, both in vitro and in vivo. CONCLUSION In this review, we discuss three approaches in the liquid biopsy including circulating cfDNA, miRNAs, and exosomes for diagnosis and evaluation of parasites and summarize circulating biomarkers in non-invasive samples during parasitic infections.
Collapse
Affiliation(s)
- Eylem Akdur Ozturk
- Department of Parasitology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Ayse Caner
- Department of Parasitology, Ege University Faculty of Medicine, 35100, Izmir, Turkey.
- Cancer Research Center, Ege University, Izmir, Turkey.
| |
Collapse
|
8
|
Croitoru VM, Cazacu IM, Popescu I, Paul D, Dima SO, Croitoru AE, Tanase AD. Clonal Hematopoiesis and Liquid Biopsy in Gastrointestinal Cancers. Front Med (Lausanne) 2022; 8:772166. [PMID: 35127745 PMCID: PMC8814311 DOI: 10.3389/fmed.2021.772166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023] Open
Abstract
The use of blood liquid biopsy is increasingly being incorporated into the clinical setting of gastrointestinal cancers care. Clonal hematopoiesis (CH) occurs naturally as a result of the accumulation of somatic mutations and the clonal proliferation of hematopoietic stem cells with normal aging. The identification of CH-mutations has been described as a source of biological noise in blood liquid biopsy. Incorrect interpretation of CH events as cancer related can have a direct impact on cancer diagnosis and treatment. This review summarizes the current understanding of CH as a form of biological noise in blood liquid biopsy and the reported clinical significance of CH in patients with GI cancers.
Collapse
Affiliation(s)
- Vlad M. Croitoru
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Department of Medical Oncology, Fundeni Clinical Institute, Bucharest, Romania
| | - Irina M. Cazacu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Department of Medical Oncology, Fundeni Clinical Institute, Bucharest, Romania
| | - Ionut Popescu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine/New York-Presbyterian, New York, NY, United States
| | - Simona Olimpia Dima
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Adina Emilia Croitoru
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Department of Medical Oncology, Fundeni Clinical Institute, Bucharest, Romania
- *Correspondence: Adina Emilia Croitoru
| | - Alina Daniela Tanase
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Bone Marrow Transplant Unit, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
9
|
Kazmi F, Shrestha N, Booth S, Dodwell D, Aroldi F, Foord T, Nicholson BD, Heesen P, Lord S, Yeoh KW, Blagden S. Next-generation sequencing for guiding matched targeted therapies in people with relapsed or metastatic cancer. Hippokratia 2021. [DOI: 10.1002/14651858.cd014872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Farasat Kazmi
- Department of Oncology; University of Oxford; Oxford UK
| | - Nipun Shrestha
- Department of Primary Care and Mental Health; University of Liverpool; Liverpool UK
| | - Stephen Booth
- Department of Oncology; University of Oxford; Oxford UK
| | - David Dodwell
- Nuffield Department of Population Health; University of Oxford; Oxford UK
| | | | | | - Brian D Nicholson
- Nuffield Department of Primary Care Health Sciences; University of Oxford; Oxford UK
| | | | - Simon Lord
- Department of Oncology; University of Oxford; Oxford UK
| | - Kheng-Wei Yeoh
- Radiation Oncology; National Cancer Centre; Singapore Singapore
| | - Sarah Blagden
- Department of Oncology; University of Oxford; Oxford UK
| |
Collapse
|
10
|
Li LS, Guo XY, Sun K. Recent advances in blood-based and artificial intelligence-enhanced approaches for gastrointestinal cancer diagnosis. World J Gastroenterol 2021; 27:5666-5681. [PMID: 34629793 PMCID: PMC8473600 DOI: 10.3748/wjg.v27.i34.5666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are among the most common cancer types and leading causes of cancer-related deaths worldwide. There is a tremendous clinical need for effective early diagnosis for better healthcare of GI cancer patients. In this article, we provide a short overview of the recent advances in GI cancer diagnosis. In the first part, we discuss the applications of blood-based biomarkers, such as plasma circulating cell-free DNA, circulating tumor cells, extracellular vesicles, and circulating cell-free RNA, for cancer liquid biopsies. In the second part, we review the current trends of artificial intelligence (AI) for pathology image and tissue biopsy analysis for GI cancer, as well as deep learning-based approaches for purity assessment of tissue biopsies. We further provide our opinions on the future directions in blood-based and AI-enhanced approaches for GI cancer diagnosis, and we think that these fields will have more intensive integrations with clinical needs in the near future.
Collapse
Affiliation(s)
- Li-Shi Li
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, Guangdong Province, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, Guangdong Province, China
| | - Xiang-Yu Guo
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, Guangdong Province, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, Guangdong Province, China
- BGI-Shenzhen, Shenzhen 518083, Guangdong Province, China
| |
Collapse
|
11
|
Udomruk S, Orrapin S, Pruksakorn D, Chaiyawat P. Size distribution of cell-free DNA in oncology. Crit Rev Oncol Hematol 2021; 166:103455. [PMID: 34464717 DOI: 10.1016/j.critrevonc.2021.103455] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-specific, circulating cell-free DNA (cfDNA) in liquid biopsy test is a novel promising biomarker in the advancement of cancer management, including early diagnosis, screening, prognosis, identification of actionable targets, and serial tumor monitoring. The specific size pattern of DNA fragments derived from cancer cells is observed to differ from that of cfDNA fragments shed by non-cancer cells. Research into the physiological and biological properties of cfDNA reveals the molecular signature carried by each cfDNA fragments, which can reflect their tissue origins, as well as the mutational profiles with significant genetic alterations. Understanding the fragmentation and size distribution of cfDNA might be a valuable hotspot in liquid biopsy research, with the potential to drive innovation in oncology.
Collapse
Affiliation(s)
- Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Santhasiri Orrapin
- Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Orthopedics, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai 50200, Thailand.
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Musculoskeletal Science and Translational Research Center (MSTR), Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
12
|
Kryvoshlyk I. CIRCULATING TUMOR CELLS: WHERE WE LEFT OFF? BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer metastasis and recurrence are the leading causes of cancer-related death. Tumor cells which leave the primary or secondary tumors and shed into the bloodstream are called circulating tumor cells (CTC). These cells are the key drivers of cancer dissemination to surrounding tissues and to distant organs. The use of CTC in clinical practice necessitates the deep insight into their biology, as well as into their role in cancer evasion of immune surveillance, tumor resistance to chemo- radio- and immunotherapies and metastatic dormancy. Aim. The purpose of the work was to review the current knowledge on the CTC biology, as well as the prospects for their use for the diagnosis and targeted treatment of metastatic disease. Methods. The work proposed the integrative literature review using MEDLINE, Biological Abstracts and EMBASE databases. Results. This review summarizes and discusses historical milestones and current data concerning СTС biology, the main stages of their life cycle, their role in metastatic cascade, clinical prospects for their use as markers for the diagnosis and prognostication of the disease course, as well as targets for cancer treatment. Conclusions. Significant progress in the area of CTC biology and their use in cancer theranostics convincingly proved the attractiveness of these cells as targets for cancer prognosis and therapy. The effective use of liquid biopsy with quantitative and phenotypic characteristics of CTCs is impeded by the imperfection of the methodology for taking biological material and by the lack of reliable markers for assessing the metastatic potential of CTCs of various origins. The variety of mechanisms of tumor cells migration and invasion requires the development of complex therapeutic approaches for anti-metastatic therapy targeting CTCs. Efforts to address these key issues could help developing new and effective cancer treatment strategies.
Collapse
|
13
|
Liquid Biopsy: A New Tool for Overcoming CDKi Resistance Mechanisms in Luminal Metastatic Breast Cancer. J Pers Med 2021; 11:jpm11050407. [PMID: 34068388 PMCID: PMC8153557 DOI: 10.3390/jpm11050407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BC) is the most common cancer diagnosed in women worldwide. Approximately 70% of BC patients have the luminal subtype, which expresses hormone receptors (HR+). Adjuvant endocrine treatments are the standard of care for HR+/HER2− BC patients. Over time, approximately 30% of those patients develop endocrine resistance and metastatic disease. Cyclin-dependent kinase inhibitors (CDKi), in combination with an aromatase inhibitor or fulvestrant, have demonstrated superior efficacies in increasing progression-free survival, with a safe toxicity profile, in HR+/HER2− metastatic BC patients. CDKi blocks kinases 4/6, preventing G1/S cell cycle transition. However, not all of the patients respond to CDKi, and those who do respond ultimately develop resistance to the combined therapy. Studies in tumour tissues and cell lines have tried to elucidate the mechanisms that underlie this progression, but there are still no conclusive data. Over the last few years, liquid biopsy has contributed relevant information. Circulating tumour materials are potential prognostic markers for determining patient prognosis in metastatic luminal BC, for monitoring disease, and for treatment selection. This review outlines the different studies performed using liquid biopsy in patients with HR+ metastatic BC treated with CDKi plus endocrine therapy. We mainly focus on those studies that describe the possible resistance mechanisms in circulating tumour-derived material.
Collapse
|
14
|
Wang SC, Liao LM, Ansar M, Lin SY, Hsu WW, Su CM, Chung YM, Liu CC, Hung CS, Lin RK. Automatic Detection of the Circulating Cell-Free Methylated DNA Pattern of GCM2, ITPRIPL1 and CCDC181 for Detection of Early Breast Cancer and Surgical Treatment Response. Cancers (Basel) 2021; 13:cancers13061375. [PMID: 33803633 PMCID: PMC8002961 DOI: 10.3390/cancers13061375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
The early detection of cancer can reduce cancer-related mortality. There is no clinically useful noninvasive biomarker for early detection of breast cancer. The aim of this study was to develop accurate and precise early detection biomarkers and a dynamic monitoring system following treatment. We analyzed a genome-wide methylation array in Taiwanese and The Cancer Genome Atlas (TCGA) breast cancer (BC) patients. Most breast cancer-specific circulating methylated CCDC181, GCM2 and ITPRIPL1 biomarkers were found in the plasma. An automatic analysis process of methylated ccfDNA was established. A combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was performed in R using Recursive Partitioning and Regression Trees to establish a new prediction model. Combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was found to have a sensitivity level of 97% and an area under the curve (AUC) of 0.955 in the training set, and a sensitivity level of 100% and an AUC of 0.961 in the test set. The circulating methylated CCDC181, GCM2 and ITPRIPL1 was also significantly decreased after surgery (all p < 0.001). The aberrant methylation patterns of the CCDC181, GCM2 and ITPRIPL1 genes means that they are potential biomarkers for the detection of early BC and can be combined with breast imaging data to achieve higher accuracy, sensitivity and specificity, facilitating breast cancer detection. They may also be applied to monitor the surgical treatment response.
Collapse
Affiliation(s)
- Sheng-Chao Wang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan;
| | - Li-Min Liao
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
| | - Muhamad Ansar
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Shih-Yun Lin
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Wei-Wen Hsu
- Department of Statistics, College of Arts and Sciences, Kansas State University, 101 Dickens Hall, 1116 Mid-Campus Drive N, Manhattan, KS 66506-0802, USA;
| | - Chih-Ming Su
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan
| | - Yu-Mei Chung
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Cai-Cing Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Chin-Sheng Hung
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan
- Correspondence: (C.-S.H.); (R.-K.L.); Tel.: +886-970-405-127 (C.-S.H.); +886-2-2736-1661 (ext. 6162) (R.-K.L.)
| | - Ruo-Kai Lin
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan;
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Clinical trial center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110, Taiwan
- Correspondence: (C.-S.H.); (R.-K.L.); Tel.: +886-970-405-127 (C.-S.H.); +886-2-2736-1661 (ext. 6162) (R.-K.L.)
| |
Collapse
|
15
|
Misawa K, Imai A, Kanazawa T, Mima M, Yamada S, Mochizuki D, Yamada T, Shinmura D, Ishikawa R, Kita J, Yamaguchi Y, Misawa Y, Mineta H. G Protein-Coupled Receptor Genes, PTGDR1, PTGDR2, and PTGIR, Are Candidate Epigenetic Biomarkers and Predictors for Treated Patients with HPV-Associated Oropharyngeal Cancer. Microorganisms 2020; 8:microorganisms8101504. [PMID: 33003642 PMCID: PMC7601742 DOI: 10.3390/microorganisms8101504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Differences in the biology of human papillomavirus (HPV)-associated oropharyngeal cancers (OPCs) and HPV-negative OPCs may have implications in patient management. Early detection is imperative to reduce HPV-associated OPC mortality. Circulating tumor DNA (ctDNA) can potentially serve as a biomarker for monitoring clinically relevant cancer-related genetic and epigenetic modifications. We analyzed the methylation status of 24 G protein-coupled receptor (GPCR) genes in verification (85 OPC primary samples) and validation (8 OPC ctDNA samples) studies using quantitative methylation-specific polymerase chain reaction (Q-MSP). The Q-MSP-based verification study with 85 OPC primary samples revealed the GPCR genes that were significantly associated with recurrence in high methylation groups (≥14 methylated genes) with OPC and HPV-associated OPC (p < 0.001). In the Kaplan–Meier estimate and multivariate Cox proportional hazard analyses, 13 GPCR genes were significantly related to increased recurrence in the methylation group. Furthermore, the validation study on ctDNA showed that three of these genes (Prostaglandin D2 receptor 1: PTGDR1, Prostaglandin D2 receptor 2: PTGDR2, and Prostaglandin I2 Receptor: PTGIR) had a prediction performance as emerging biomarkers. We characterized the relationship between the methylation status of GPCR genes and outcomes in HPV-associated OPC. Our results highlight the potential utility of ctDNA methylation-based detection for the clinical management of HPV-associated OPC.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
- Correspondence: ; Tel.: 81-53-435-2252; Fax: 81-53-435-2253
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Takeharu Kanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan;
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Taiki Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Daichi Shinmura
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Ryuji Ishikawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Jyunya Kita
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Yuki Yamaguchi
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (A.I.); (M.M.); (S.Y.); (D.M.); (T.Y.); (D.S.); (R.I.); (J.K.); (Y.Y.); (Y.M.); (H.M.)
| |
Collapse
|
16
|
MicroRNAs from Liquid Biopsy Derived Extracellular Vesicles: Recent Advances in Detection and Characterization Methods. Cancers (Basel) 2020; 12:cancers12082009. [PMID: 32707943 PMCID: PMC7465219 DOI: 10.3390/cancers12082009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsies have become a convenient tool in cancer diagnostics, real-time disease monitoring, and evaluation of residual disease. Yet, the information still encrypted in the variety of tumor-derived molecules identified in biofluids has proven difficult to decipher due to the technological limitations imposed by their biological nature. Such is the case of extracellular vesicle (EV) encapsulated ncRNAs, which have gained traction in recent years as biomarkers. Due to their resilience towards degrading factors they may act as suitable disease indicators. This review addresses the less described issues in this context. We present an overview of less investigated biofluids that can be used for EV isolation in addition to different isolation approaches to overcome the technical challenges these specimens harbor. Furthermore, we summarize the latest technological advances providing improvement to ncRNA detection and analysis. Thereby, this review summarizes the current state-of-the-art methodologies regarding EV and EV derived miRNA analysis and how they compare to current approaches.
Collapse
|
17
|
Zhao C, Pan Y, Wang Y, Li Y, Han W, Lu L, Tang W, Li P, Ou Z, Zhang M, Xiong Z, Xu R, Lu Q, Xu Z, Qi L, Wang L, Xu G. A novel cell-free single-molecule unique primer extension resequencing (cf-SUPER) technology for bladder cancer non-invasive detection in urine. Transl Androl Urol 2020; 9:1222-1231. [PMID: 32676405 PMCID: PMC7354286 DOI: 10.21037/tau-19-774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The clinical diagnostic method for bladder cancer is cystoscopy, an invasive, expensive and inconvenient clinical test. Using urinary cell-free DNA (cfDNA) to develop non-invasive test for bladder cancer was a promising liquid biopsy. Methods To improve the using rate of cfDNA template and decrease the PCR bias for liquid biopsy using urinary cfDNA, we developed a cell-free single-molecule unique primer extension resequencing (cf-SUPER) technology which was done for 29 matched urinary cfDNA and tumor DNA samples of bladder cancer patients to evaluate consistency of mutation profiles. Then, a 22 high mutational frequence genes was selected to form an uriprier panel, which was analyzed in 100 patients (47 bladder cancer cases and 53 controls) using cf-SUPER technology. This performance of the technology was evaluated using bioinformatic tools and clinical samples. Results The study showed that cf-SUPER technology can accurately detect mutations with allele fractions even low as 0.01% and the DNA input as low as 1 ng. The consistency of mutation profiles and clinical pathological diagnose between 29 matched urinary cfDNA and tumor DNA samples was respectively 82.76% and 89.66% by using cf-SUPER technology. Using cf-SUPER technology, the sensitivity and specificity were 98%, 94% respectively for uriprier panel in non-invasive test. Conclusions The preliminary work shows that cf-SUPER technology will be a promising method for liquid biopsy. Focusing urinary cfDNA, the non-invasive diagnose and monitoring of bladder cancer can come true by using cf-SUPER technology.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Urology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Pan
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yuanwei Li
- Department of Urology, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Weiqing Han
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha 410013, China
| | - Li Lu
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| | - Wei Tang
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| | - Pei Li
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| | - Zhenyu Ou
- Department of Urology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mengda Zhang
- Department of Urology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhuang Xiong
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Qiang Lu
- Department of Urology, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Zhenzhou Xu
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha 410013, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Long Wang
- Department of Urology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Genming Xu
- Yearth Biotechnology Co. Ltd., Changsha 410008, China
| |
Collapse
|
18
|
Misawa K, Imai A, Matsui H, Kanai A, Misawa Y, Mochizuki D, Mima M, Yamada S, Kurokawa T, Nakagawa T, Mineta H. Identification of novel methylation markers in HPV-associated oropharyngeal cancer: genome-wide discovery, tissue verification and validation testing in ctDNA. Oncogene 2020; 39:4741-4755. [PMID: 32415241 PMCID: PMC7286817 DOI: 10.1038/s41388-020-1327-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/03/2022]
Abstract
Human papilloma virus (HPV)-associated oropharyngeal cancer (OPC) is an independent tumour type with regard to cellular, biological, and clinical features. The use of non-invasive biomarkers such as circulating tumour DNA (ctDNA) may be relevant in early diagnosis and eventually improve the outcomes of patients with head and neck squamous cell carcinoma (HNSCC). Genome-wide discovery using RNA sequencing and reduced representation bisulfite sequencing yielded 21 candidates for methylation-targeted genes. A verification study (252 HNSCC patients) using quantitative methylation-specific PCR (Q-MSP) identified 10 genes (ATP2A1, CALML5, DNAJC5G, GNMT, GPT, LY6D, LYNX1, MAL, MGC16275, and MRGPRF) that showed a significant increase recurrence in methylation groups with OPC. Further study on ctDNA using Q-MSP in HPV-associated OPC showed that three genes (CALML5, DNAJC5G, and LY6D) had a high predictive ability as emerging biomarkers for a validation set, each capable of discriminating between the plasma of the patients from healthy individuals. Among the 42 ctDNA samples, methylated CALML5, DNAJC5G, and LY6D were observed in 31 (73.8%), 19 (45.2%), and 19 (45.2%) samples, respectively. Among pre-treatment ctDNA samples, methylated CALML5, DNAJC5G, and LY6D were observed in 8/8 (100%), 7/8 (87.5%), and 7/8 (87.5%) samples, respectively. Methylated CALML5, DNAJC5G, and LY6D were found in 2/8 (25.0%), 0/8 (0%), and 1/8 (12.5%) of the final samples in the series, respectively. Here, we present the relationship between the methylation status of three specific genes and cancer recurrence for risk classification of HPV-associated OPC cases. In conclusion, ctDNA analysis has the potential to aid in determining patient prognosis and real-time surveillance for disease recurrences and serves as an alternative method of screening for HPV-associated OPC.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan.
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Kanai
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoya Kurokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuya Nakagawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
19
|
Jahan R, Ganguly K, Smith LM, Atri P, Carmicheal J, Sheinin Y, Rachagani S, Natarajan G, Brand RE, Macha MA, Grandgenett PM, Kaur S, Batra SK. Trefoil factor(s) and CA19.9: A promising panel for early detection of pancreatic cancer. EBioMedicine 2019; 42:375-385. [PMID: 30956167 PMCID: PMC6491718 DOI: 10.1016/j.ebiom.2019.03.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Background Trefoil factors (TFF1, TFF2, and TFF3) are small secretory molecules that recently have gained significant attention in multiple studies as an integral component of pancreatic cancer (PC) subtype-specific gene signature. Here, we comprehensively investigated the diagnostic potential of all the member of trefoil family, i.e., TFF1, TFF2, and TFF3 in combination with CA19.9 for detection of PC. Methods Trefoil factors (TFFs) gene expression was analyzed in publicly available cancer genome datasets, followed by assessment of their expression in genetically engineered spontaneous mouse model (GEM) of PC (KrasG12D; Pdx1-Cre (KC)) and in human tissue microarray consisting of normal pancreas adjacent to tumor (NAT), precursor lesions (PanIN), and various pathological grades of PC by immunohistochemistry (IHC). Serum TFFs and CA19.9 levels were evaluated via ELISA in comprehensive sample set (n = 362) comprised of independent training and validation sets each containing benign controls (BC), chronic pancreatitis (CP), and various stages of PC. Univariate and multivariate logistic regression and receiver operating characteristic curves (ROC) were used to examine their diagnostic potential both alone and in combination with CA19.9. Findings The publicly available datasets and expression analysis revealed significant increased expression of TFF1, TFF2, and TFF3 in human PanINs and PC tissues. Assessment of KC mouse model also suggested upregulated expression of TFFs in PanIN lesions and early stage of PC. In serum analyses studies, TFF1 and TFF2 were significantly elevated in early stages of PC in comparison to benign and CP control group while significant elevation in TFF3 levels were observed in CP group with no further elevation in its level in early stage PC group. In receiver operating curve (ROC) analyses, combination of TFFs with CA19.9 emerged as promising panel for discriminating early stage of PC (EPC) from BC (AUCTFF1+TFF2+TFF3+CA19.9 = 0.93) as well as CP (AUCTFF1+TFF2+TFF3+CA19.9 = 0.93). Notably, at 90% specificity (desired for blood-based biomarker panel), TFFs combination improved CA19.9 sensitivity by 10% and 25% to differentiate EPC from BC and CP respectively. In an independent blinded validation set, the combination of TFFs and CA19.9 (AUCTFF1+TFF2+TFF3+CA19.9 = 0.82) also improved the overall efficacy of CA19.9 (AUCCA19.9 = 0.66) to differentiate EPC from CP proving unique biomarker capabilities of TFFs to distinguish early stage of this deadly lethal disease. Interpretation In silico, tissue and serum analyses validated significantly increased level of all TFFs in precursor lesions and early stages of PC. The combination of TFFs enhanced sensitivity and specificity of CA19.9 to discriminate early stage of PC from benign control and chronic pancreatitis groups.
Collapse
Affiliation(s)
- Rahat Jahan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Lynette M Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Yuri Sheinin
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Department of Otolaryngology-Head & Neck Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
20
|
Circulating Tumor Cell Detection in Lung Cancer: But to What End? Cancers (Basel) 2019; 11:cancers11020262. [PMID: 30813420 PMCID: PMC6406797 DOI: 10.3390/cancers11020262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
The understanding of the natural history and biology of lung cancer has been enhanced by studies into circulating tumor cells (CTCs). Fundamental and translational research, as well as clinical trials in the characterization and behavior of these cells, have constantly contributed to improving understanding within the domain of thoracic oncology. However, the use of these CTCs as prognostic and predictive biomarkers has not been adopted to the same extent as circulating free DNA (cf-DNA) in plasma, in the daily practice of thoracic oncologists. However, recent technological advances have firmly put the detection and characterization of CTCs in thoracic oncology back on the agenda, and have opened up perspectives for their routine clinical use. This review discusses the major advances of using CTCs in the domain of thoracic oncology, as well as the envisaged short- and long-term prospects.
Collapse
|