1
|
Sallinger M, Grabmayr H, Humer C, Bonhenry D, Romanin C, Schindl R, Derler I. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2024; 602:1475-1507. [PMID: 36651592 DOI: 10.1113/jp283828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Christina Humer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
2
|
Panina IS, Krylov NA, Chugunov AO, Efremov RG, Kordyukova LV. The Mechanism of Selective Recognition of Lipid Substrate by hDHHC20 Enzyme. Int J Mol Sci 2022; 23:ijms232314791. [PMID: 36499114 PMCID: PMC9739150 DOI: 10.3390/ijms232314791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
S-acylation is a post-translational linkage of long chain fatty acids to cysteines, playing a key role in normal physiology and disease. In human cells, the reaction is catalyzed by a family of 23 membrane DHHC-acyltransferases (carrying an Asp-His-His-Cys catalytic motif) in two stages: (1) acyl-CoA-mediated autoacylation of the enzyme; and (2) further transfer of the acyl chain to a protein substrate. Despite the availability of a 3D-structure of human acyltransferase (hDHHC20), the molecular aspects of lipid selectivity of DHHC-acyltransferases remain unclear. In this paper, using molecular dynamics (MD) simulations, we studied membrane-bound hDHHC20 right before the acylation by C12-, C14-, C16-, C18-, and C20-CoA substrates. We found that: (1) regardless of the chain length, its terminal methyl group always reaches the "ceiling" of the enzyme's cavity; (2) only for C16, an optimal "reactivity" (assessed by a simple geometric criterion) permits the autoacylation; (3) in MD, some key interactions between an acyl-CoA and a protein differ from those in the reference crystal structure of the C16-CoA-hDHHS20 mutant complex (probably, because this structure corresponds to a non-native dimer). These features of specific recognition of full-size acyl-CoA substrates support our previous hypothesis of "geometric and physicochemical selectivity" derived for simplified acyl-CoA analogues.
Collapse
Affiliation(s)
- Irina S. Panina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- International Laboratory for Supercomputer Atomistic Modelling and Multi-Scale Analysis, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Nikolay A. Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- International Laboratory for Supercomputer Atomistic Modelling and Multi-Scale Analysis, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Anton O. Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- International Laboratory for Supercomputer Atomistic Modelling and Multi-Scale Analysis, National Research University Higher School of Economics, 101000 Moscow, Russia
- Moscow Institute of Physics and Technology, State University, Dolgoprudny, 141701 Moscow, Russia
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- International Laboratory for Supercomputer Atomistic Modelling and Multi-Scale Analysis, National Research University Higher School of Economics, 101000 Moscow, Russia
- Moscow Institute of Physics and Technology, State University, Dolgoprudny, 141701 Moscow, Russia
- Correspondence:
| | - Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Ma T, Fu S, Wang K, Wang Y, Wu J, Zhou X. Palmitoylation Is Indispensable for Remorin to Restrict Tobacco Mosaic Virus Cell-to-Cell Movement in Nicotiana benthamiana. Viruses 2022; 14:1324. [PMID: 35746795 PMCID: PMC9227848 DOI: 10.3390/v14061324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Remorin (REM) is a plant-specific plasma membrane-associated protein regulating plasmodesmata plasticity and restricting viral cell-to-cell movement. Here, we show that palmitoylation is broadly present in group 1 remorin proteins in Nicotiana benthamiana and is crucial for plasma membrane localization and accumulation. By screening the four members of N. benthamiana group 1 remorin proteins, we found that only NbREM1.5 could significantly hamper tobacco mosaic virus (TMV) cell-to-cell movement. We further showed that NbREM1.5 interacts with the movement protein of TMV in vivo and interferes with its function of expanding the plasmodesmata size exclusion limit. We also demonstrated that palmitoylation is indispensable for NbREM1.5 to hamper plasmodesmata permeability and inhibit TMV cell-to-cell movement.
Collapse
Affiliation(s)
- Tingting Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Kun Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.M.); (S.F.); (K.W.); (Y.W.); (J.W.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Maltan L, Andova AM, Derler I. The Role of Lipids in CRAC Channel Function. Biomolecules 2022; 12:biom12030352. [PMID: 35327543 PMCID: PMC8944985 DOI: 10.3390/biom12030352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
The composition and dynamics of the lipid membrane define the physical properties of the bilayer and consequently affect the function of the incorporated membrane transporters, which also applies for the prominent Ca2+ release-activated Ca2+ ion channel (CRAC). This channel is activated by receptor-induced Ca2+ store depletion of the endoplasmic reticulum (ER) and consists of two transmembrane proteins, STIM1 and Orai1. STIM1 is anchored in the ER membrane and senses changes in the ER luminal Ca2+ concentration. Orai1 is the Ca2+-selective, pore-forming CRAC channel component located in the plasma membrane (PM). Ca2+ store-depletion of the ER triggers activation of STIM1 proteins, which subsequently leads to a conformational change and oligomerization of STIM1 and its coupling to as well as activation of Orai1 channels at the ER-PM contact sites. Although STIM1 and Orai1 are sufficient for CRAC channel activation, their efficient activation and deactivation is fine-tuned by a variety of lipids and lipid- and/or ER-PM junction-dependent accessory proteins. The underlying mechanisms for lipid-mediated CRAC channel modulation as well as the still open questions, are presented in this review.
Collapse
|
5
|
Rashidi S, Tuteja R, Mansouri R, Ali-Hassanzadeh M, Shafiei R, Ghani E, Karimazar M, Nguewa P, Manzano-Román R. The main post-translational modifications and related regulatory pathways in the malaria parasite Plasmodium falciparum: An update. J Proteomics 2021; 245:104279. [PMID: 34089893 DOI: 10.1016/j.jprot.2021.104279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
There are important challenges when investigating individual post-translational modifications (PTMs) or protein interaction network and delineating if PTMs or their changes and cross-talks are involved during infection, disease initiation or as a result of disease progression. Proteomics and in silico approaches now offer the possibility to complement each other to further understand the regulatory involvement of these modifications in parasites and infection biology. Accordingly, the current review highlights key expressed or altered proteins and PTMs are invisible switches that turn on and off the function of most of the proteins. PTMs include phosphorylation, glycosylation, ubiquitylation, palmitoylation, myristoylation, prenylation, acetylation, methylation, and epigenetic PTMs in P. falciparum which have been recently identified. But also other low-abundant or overlooked PTMs that might be important for the parasite's survival, infectivity, antigenicity, immunomodulation and pathogenesis. We here emphasize the PTMs as regulatory pathways playing major roles in the biology, pathogenicity, metabolic pathways, survival, host-parasite interactions and the life cycle of P. falciparum. Further validations and functional characterizations of such proteins might confirm the discovery of therapeutic targets and might most likely provide valuable data for the treatment of P. falciparum, the main cause of severe malaria in human.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008 Pamplona, Spain.
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Gadalla MR, Morrison E, Serebryakova MV, Han X, Wolff T, Freund C, Kordyukova L, Veit M. NS1-mediated upregulation of ZDHHC22 acyltransferase in influenza a virus infected cells. Cell Microbiol 2021; 23:e13322. [PMID: 33629465 DOI: 10.1111/cmi.13322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Influenza A viruses contain two S-acylated proteins, the ion channel M2 and the glycoprotein hemagglutinin (HA). Acylation of the latter is essential for virus replication. Here we analysed the expression of each of the 23 members of the family of ZDHHC acyltransferases in human airway cells, the site of virus replication. RT-PCR revealed that every ZDHHC acyltransferase (except ZDHHC19) is expressed in A549 and Calu cells. Interestingly, expression of one ZDHHC, ZDHHC22, is upregulated in virus-infected cells; this effect is more pronounced after infection with an avian compared to a human virus strain. The viral protein NS1 triggers ZDHHC22 expression in transfected cells, whereas recombinant viruses lacking a functional NS1 gene did not cause ZDHHC22 upregulation. CRISPR/Cas9 technology was then used to knock-out the ZDHHC22 gene in A549 cells. However, acylation of M2 and HA was not reduced, as analysed for intracellular HA and M2 and the stoichiometry of S-acylation of HA incorporated into virus particles did not change according to MALDI-TOF mass spectrometry analysis. Comparative mass spectrometry of palmitoylated proteins in wt and ΔZDHHC22 cells identified 25 potential substrates of ZDHHC22 which might be involved in virus replication.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, Berlin, Germany.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eliot Morrison
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Germany
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Xueijiao Han
- Institute of Virology, Free University Berlin, Berlin, Germany
| | - Thorsten Wolff
- Unit 17: Influenza and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Germany
| | - Larisa Kordyukova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Michael Veit
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
7
|
Khrustalev VV, Kordyukova LV, Arutyunyan AM, Poboinev VV, Khrustaleva TA, Stojarov AN, Baratova LA, Sapon AS, Lugin VG. The cytoplasmic tail of influenza A/H1N1 virus hemagglutinin is β-structural. J Biomol Struct Dyn 2020; 40:4642-4661. [PMID: 33317396 DOI: 10.1080/07391102.2020.1860827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Influenza A/H1N1 virus hemagglutinin (HA) is an integral type I glycoprotein that contains a large glycosylated ectodomain, a transmembrane domain, and a cytoplasmic tail (CT) of 10-14 amino acid residues. There are absolutely no data on the secondary or tertiary structure of the HA CT, which is important for virus pathogenesis. Three highly conserved cysteines are post-translationally modified by the attachment of fatty acid residues that pin the CT to the lipid membrane inside the virion. We applied circular dichroism (CD) and fluorescence spectroscopy analysis to examine four synthetic peptides corresponding to 14-15 C-terminal residues of H1 subtype HA (NH2-WMCSNGSLQCRICI-COOH; NH2-FWMCSNGSLQCRICI-COOH), with free or acetaminomethylated cysteines, in the reduced or non-reduced state, at various pH values and temperatures. The CD analysis detected the formation of a β-structure (30-65% according to the new BeStSel algorithm), in addition to an unstructured random coil, in every peptide in various conditions. It was completely or partially recognized as an antiparallel β-structure that was also confirmed by the multi-bounce Horizontal Attenuated Total Reflectance Fourier Transformed Infrared (HATR-FTIR) spectroscopy analysis. According to the experimental data, as well as 3 D modeling, we assume that the amino acid sequence corresponding to the HA CT may form a short antiparallel β-structure under the lipid membrane within a virion.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Victor V Poboinev
- Department of General Chemistry, Belarusian State Medical University, Minsk, Belarus
| | - Tatyana A Khrustaleva
- Biochemical group of the Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Aleksander N Stojarov
- Department of Radiation Medicine and Ecology, Belarusian State Medical University, Minsk, Belarus
| | - Lyudmila A Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alena S Sapon
- Center for Physical and Chemical Research Methods, Belarusian State Technological University, Minsk, Belarus
| | - Valery G Lugin
- Center for Physical and Chemical Research Methods, Belarusian State Technological University, Minsk, Belarus
| |
Collapse
|
8
|
Kordyukova LV, Mintaev RR, Rtishchev AA, Kunda MS, Ryzhova NN, Abramchuk SS, Serebryakova MV, Khrustalev VV, Khrustaleva TA, Poboinev VV, Markushin SG, Voronina OL. Filamentous versus Spherical Morphology: A Case Study of the Recombinant A/WSN/33 (H1N1) Virus. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:297-309. [PMID: 32036809 DOI: 10.1017/s1431927620000069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Influenza A virus is a serious human pathogen that assembles enveloped virions on the plasma membrane of the host cell. The pleiomorphic morphology of influenza A virus, represented by spherical, elongated, or filamentous particles, is important for the spread of the virus in nature. Using fixative protocols for sample preparation and negative staining electron microscopy, we found that the recombinant A/WSN/33 (H1N1) (rWSN) virus, a strain considered to be strictly spherical, may produce filamentous particles when amplified in the allantoic cavity of chicken embryos. In contrast, the laboratory WSN strain and the rWSN virus amplified in Madin-Darby canine kidney cells exhibited a spherical morphology. Next-generation sequencing (NGS) suggested a rare Ser126Cys substitution in the M1 protein of rWSN, which was confirmed by the mass spectrometric analysis. No structurally relevant substitutions were found by NGS in other proteins of rWSN. Bioinformatics algorithms predicted a neutral structural effect of the Ser126Cys mutation. The mrWSN_M1_126S virus generated after the introduction of the reverse Cys126Ser substitution exhibited a similar host-dependent partially filamentous phenotype. We hypothesize that a shortage of some as-yet-undefined cellular components involved in virion budding and membrane scission may result in the appearance of filamentous particles in the case of usually "nonfilamentous" virus strains.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991Moscow, Russia
| | - Ramil R Mintaev
- Mechnikov Research Institute of Vaccine and Sera, 105064Moscow, Russia
- Federal State Budgetary Institution «Center for Strategic Planning and Management for Medical and Biological Health Risks», Ministry of Health, 119121Moscow, Russia
| | | | - Marina S Kunda
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| | - Natalia N Ryzhova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| | - Sergei S Abramchuk
- Department of Chemistry, Lomonosov Moscow State University, 119234Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991Moscow, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991Moscow, Russia
| | - Vladislav V Khrustalev
- Department of General Chemistry, Belarusian State Medical University, 220116Minsk, Belarus
| | - Tatyana A Khrustaleva
- Biochemical Group of the Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, 220072Minsk, Belarus
| | - Victor V Poboinev
- Department of General Chemistry, Belarusian State Medical University, 220116Minsk, Belarus
| | | | - Olga L Voronina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| |
Collapse
|
9
|
Gadalla MR, Veit M. Toward the identification of ZDHHC enzymes required for palmitoylation of viral protein as potential drug targets. Expert Opin Drug Discov 2019; 15:159-177. [PMID: 31809605 DOI: 10.1080/17460441.2020.1696306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: S-acylation is the attachment of fatty acids not only to cysteines of cellular, but also of viral proteins. The modification is often crucial for the protein´s function and hence for virus replication. Transfer of fatty acids is mediated by one or several of the 23 members of the ZDHHC family of proteins. Since their genes are linked to various human diseases, they represent drug targets.Areas covered: The authors explore whether targeting acylation of viral proteins might be a strategy to combat viral diseases. Many human pathogens contain S-acylated proteins; the ZDHHCs involved in their acylation are currently identified. Based on the 3D structure of two ZDHHCs, the regulation and the biochemistry of the palmitolyation reaction and the lipid and protein substrate specificities are discussed. The authors then speculate how ZDHHCs might recognize S-acylated membrane proteins of Influenza virus.Expert opinion: Although many viral diseases can now be treated, the available drugs bind to viral proteins that rapidly mutate and become resistant. To develop inhibitors for the genetically more stable cellular ZDHHCs, their binding sites for viral substrates need to be identified. If only a few cellular proteins are recognized by the same binding site, development of specific inhibitors may have therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, Berlin, Germany.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Michael Veit
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|