1
|
Xu J, Liu M, Xue J, Lu P. Deciphering fatty acid biosynthesis-driven molecular subtypes in pancreatic ductal adenocarcinoma with prognostic insights. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00953-7. [PMID: 38753153 DOI: 10.1007/s13402-024-00953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/26/2024] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge due to its high heterogeneity and aggressiveness. Recognizing the urgency to delineate molecular subtypes, our study focused on the emerging field of lipid metabolism remodeling in PDAC, particularly exploring the prognostic potential and molecular classification associated with fatty acid biosynthesis. METHODS Gene set variation analysis (GSVA) and single-sample gene set enrichment analysis (ssGSEA) were performed to evaluate the dysregulation of lipid metabolism in PDAC. Univariate cox analysis and the LASSO module were used to build a prognostic risk score signature. The distinction of gene expression in different risk groups was explored by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Weighted Gene Co-expression Network Analysis (WGCNA). The biological function of Acyl-CoA Synthetase Long Chain Family Member 5 (ACSL5), a pivotal gene within 7-hub gene signature panel, was validated through in vitro assays. RESULTS Our study identified a 7-hub gene signature associated with fatty acid biosynthesis-related genes (FRGs), providing a robust tool for prognosis prediction. The high-FRGs score group displayed a poorer prognosis, decreased immune cell infiltration, and a higher tumor mutation burden. Interestingly, this group exhibited enhanced responsiveness to various compounds according to the Genomics of Drug Sensitivity in Cancer (GDSC) database. Notably, ACSL5 was upregulated in PDAC and essential for tumor progression. CONCLUSION In conclusion, our research defined two novel fatty acid biosynthesis-based subtypes in PDAC, characterized by distinct transcriptional profiles. These subtypes not only served as prognostic indicator, but also offered valuable insights into their metastatic propensity and therapeutic potential.
Collapse
Affiliation(s)
- Junyi Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China.
| | - Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
2
|
Niu N, Shen X, Wang Z, Chen Y, Weng Y, Yu F, Tang Y, Lu P, Liu M, Wang L, Sun Y, Yang M, Shen B, Jin J, Lu Z, Jiang K, Shi Y, Xue J. Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer. Cancer Cell 2024; 42:869-884.e9. [PMID: 38579725 DOI: 10.1016/j.ccell.2024.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) involves a significant accumulation of cancer-associated fibroblasts (CAFs) as part of the host response to tumor cells. The origins and functions of transcriptionally diverse CAF populations in PDAC remain poorly understood. Tumor cell-intrinsic genetic mutations and epigenetic dysregulation may reshape the TME; however, their impacts on CAF heterogeneity remain elusive. SETD2, a histone H3K36 trimethyl-transferase, functions as a tumor suppressor. Through single-cell RNA sequencing, we identify a lipid-laden CAF subpopulation marked by ABCA8a in Setd2-deficient pancreatic tumors. Our findings reveal that tumor-intrinsic SETD2 loss unleashes BMP2 signaling via ectopic gain of H3K27Ac, leading to CAFs differentiation toward lipid-rich phenotype. Lipid-laden CAFs then enhance tumor progression by providing lipids for mitochondrial oxidative phosphorylation via ABCA8a transporter. Together, our study links CAF heterogeneity to epigenetic dysregulation in tumor cells, highlighting a previously unappreciated metabolic interaction between CAFs and pancreatic tumor cells.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqing Shen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yueyue Chen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawen Weng
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feier Yu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yufeng Shi
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Lu P, Xu J, Shen X, Sun J, Liu M, Niu N, Wang Q, Xue J. Spatiotemporal role of SETD2-H3K36me3 in murine pancreatic organogenesis. Cell Rep 2024; 43:113703. [PMID: 38265933 DOI: 10.1016/j.celrep.2024.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/11/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Pancreas development is tightly controlled by multilayer mechanisms. Despite years of effort, large gaps remain in understanding how histone modifications coordinate pancreas development. SETD2, a predominant histone methyltransferase of H3K36me3, plays a key role in embryonic stem cell differentiation, whose role in organogenesis remains elusive. Here, by combination of cleavage under targets and tagmentation (CUT&Tag), assay for transposase-accessible chromatin using sequencing (ATAC-seq), and bulk RNA sequencing, we show a dramatic increase in the H3K36me3 level from the secondary transition phase and decipher the related transcriptional alteration. Using single-cell RNA sequencing, we define that pancreatic deletion of Setd2 results in abnormalities in both exocrine and endocrine lineages: hyperproliferative tip progenitor cells lead to abnormal differentiation; Ngn3+ endocrine progenitors decline due to the downregulation of Nkx2.2, leading to insufficient endocrine development. Thus, these data identify SETD2 as a crucial player in embryonic pancreas development, providing a clue to understanding the dysregulation of histone modifications in pancreatic disorders.
Collapse
Affiliation(s)
- Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junyi Xu
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqing Shen
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningning Niu
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Mai CW, Chin KY, Foong LC, Pang KL, Yu B, Shu Y, Chen S, Cheong SK, Chua CW. Modeling prostate cancer: What does it take to build an ideal tumor model? Cancer Lett 2022; 543:215794. [PMID: 35718268 DOI: 10.1016/j.canlet.2022.215794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is frequently characterized as a multifocal disease with great intratumoral heterogeneity as well as a high propensity to metastasize to bone. Consequently, modeling prostate tumor has remained a challenging task for researchers in this field. In the past decades, genomic advances have led to the identification of key molecular alterations in prostate cancer. Moreover, resistance towards second-generation androgen-deprivation therapy, namely abiraterone and enzalutamide has unveiled androgen receptor-independent diseases with distinctive histopathological and clinical features. In this review, we have critically evaluated the commonly used preclinical models of prostate cancer with respect to their capability of recapitulating the key genomic alterations, histopathological features and bone metastatic potential of human prostate tumors. In addition, we have also discussed the potential use of the emerging organoid models in prostate cancer research, which possess clear advantages over the commonly used preclinical tumor models. We anticipate that no single model can faithfully recapitulate the complexity of prostate cancer, and thus, propose the use of a cost- and time-efficient integrated tumor modeling approach for future prostate cancer investigations.
Collapse
Affiliation(s)
- Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Yong Chin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri, 79200, Malaysia
| | - Bin Yu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
5
|
Liu K, Jing N, Wang D, Xu P, Wang J, Chen X, Cheng C, Xin Z, He Y, Zhao H, Ji Z, Zhang P, Gao WQ, Zhu HH, Zhang K. A novel mouse model for liver metastasis of prostate cancer reveals dynamic tumour-immune cell communication. Cell Prolif 2021; 54:e13056. [PMID: 34021647 PMCID: PMC8249794 DOI: 10.1111/cpr.13056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Objectives In contrast to extensive studies on bone metastasis in advanced prostate cancer (PCa), liver metastasis has been under‐researched so far. In order to decipher molecular and cellular mechanisms underpinning liver metastasis of advanced PCa, we develop a rapid and immune sufficient mouse model for liver metastasis of PCa via orthotopic injection of organoids from PbCre+; rb1f/f;p53f/f mice. Materials and Methods PbCre+;rb1f/f;p53f/f and PbCre+;ptenf/f;p53f/f mice were used to generate PCa organoid cultures in vitro. Immune sufficient liver metastasis models were established via orthotopic transplantation of organoids into the prostate of C57BL/6 mice. Immunofluorescent and immunohistochemical staining were performed to characterize the lineage profile in primary tumour and organoid‐derived tumour (ODT). The growth of niche‐labelling reporter infected ODT can be visualized by bioluminescent imaging system. Immune cells that communicated with tumour cells in the liver metastatic niche were determined by flow cytometry. Results A PCa liver metastasis model with full penetrance is established in immune‐intact mouse. This model reconstitutes the histological and lineage features of original tumours and reveals dynamic tumour‐immune cell communication in liver metastatic foci. Our results suggest that a lack of CD8+ T cell and an enrichment of CD163+ M2‐like macrophage as well as PD1+CD4+ T cell contribute to an immuno‐suppressive microenvironment of PCa liver metastasis. Conclusions Our model can be served as a reliable tool for analysis of the molecular pathogenesis and tumour‐immune cell crosstalk in liver metastasis of PCa, and might be used as a valuable in vivo model for therapy development.
Collapse
Affiliation(s)
- Kaiyuan Liu
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Jing
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Deng Wang
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Penghui Xu
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinming Wang
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Chen
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaping Cheng
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixiang Xin
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuman He
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhao
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - ZhongZhong Ji
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei-Qiang Gao
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Helen He Zhu
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhang
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Yang X, Xu X, Zhu H, Wang M, Wang D. Organoid research in digestive system tumors. Oncol Lett 2021; 21:308. [PMID: 33732384 PMCID: PMC7905586 DOI: 10.3892/ol.2021.12569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Digestive system tumors are the most common cause of cancer-associated mortality worldwide, although their underlying biological behavior still requires further investigation. Most of the in vitro studies that have been published have been based on the two-dimensional (2D) culture system. However, digestive system tumors exhibit considerable histological and functional heterogeneity, and clonal diversity and heterogeneity cannot be entirely reflected in the 2D culture system. Recently, the development of organoids appears to have shed some light on this area of cancer research. The present review discusses the recent advancements that have been made in the development of several specific organoids in digestive system solid tumors.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, P.R. China
| | - Xuewen Xu
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, P.R. China
| | - Haitao Zhu
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, P.R. China
| | - Ming Wang
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, P.R. China
| | - Dongqing Wang
- Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212031, P.R. China
| |
Collapse
|
7
|
Patient-derived tumour models for personalized therapeutics in urological cancers. Nat Rev Urol 2020; 18:33-45. [PMID: 33173206 DOI: 10.1038/s41585-020-00389-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Preclinical knowledge of dysregulated pathways and potential biomarkers for urological cancers has undergone limited translation into the clinic. Moreover, the low approval rate of new anticancer drugs and the heterogeneous drug responses in patients indicate that current preclinical models do not always reflect the complexity of malignant disease. Patient-derived tumour models used in preclinical uro-oncology research include 3D culture systems, organotypic tissue slices and patient-derived xenograft models. Technological innovations have enabled major improvements in the capacity of these tumour models to reproduce the clinical complexity of urological cancers. Each type of patient-derived model has inherent advantages and limitations that can be exploited, either alone or in combination, to gather specific knowledge on clinical challenges and address unmet clinical needs. Nevertheless, few opportunities exist for patients with urological cancers to benefit from personalized therapeutic approaches. Clinical validation of experimental data is needed to facilitate the translation and implementation of preclinical knowledge into treatment decision making.
Collapse
|
8
|
Fabrication of Dentin-Pulp-Like Organoids Using Dental-Pulp Stem Cells. Cells 2020; 9:cells9030642. [PMID: 32155898 PMCID: PMC7140482 DOI: 10.3390/cells9030642] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
We developed a novel dentin-pulp-like organoid. It has both stem-cell and odontoblast characteristics using a mesenchymal cell lineage of human dental-pulp stem cells (hDPSCs). The mixture of hDPSCs and Matrigel was transferred into the maintenance medium (MM) and divided into four different groups according to how long they were maintained in the odontogenic differentiation medium (ODM). All organoids were harvested at 21 days and analyzed to find the optimal differentiation condition. To assess the re-fabrication of dentin-pulp-like organoid, after dissociation of the organoids, it was successfully regenerated. Additionally, its biological activity was confirmed by analyzing changes of relevant gene expression and performing a histology analysis after adding Biodentine® into the ODM. The organoid was cultured for 11 days in the ODM (ODM 11) had the most features of both stem cells and differentiated cells (odontoblasts) as confirmed by relevant gene expression and histology analyses. Micro-computed tomography and an electron microscope also showed mineralization and odontoblastic differentiation. Finally, ODM 11 demonstrated a biologically active response to Biodentine® treatment. In conclusion, for the first time, we report the fabrication of a dentin-pulp-like organoid using mesenchymal stem cells. This organoid has potential as a future therapeutic strategy for tooth regeneration.
Collapse
|