1
|
Liu D, Li T, Liu L, Che X, Li X, Liu C, Wu G. Adeno-associated virus therapies: Pioneering solutions for human genetic diseases. Cytokine Growth Factor Rev 2024; 80:109-120. [PMID: 39322487 DOI: 10.1016/j.cytogfr.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Adeno-associated virus (AAV) has emerged as a fundamental component in the gene therapy landscape, widely acknowledged for its effectiveness in therapeutic gene delivery. The success of AAV-based therapies, such as Luxturna and Zolgensma, underscores their potential as a leading vector in gene therapy. This article provides an in-depth review of the development and mechanisms of AAV vector-based therapies, offering a comprehensive analysis of the latest clinical trial outcomes in central nervous system (CNS) diseases, ocular conditions, and hemophilia, where AAV therapies have shown promising results. Additionally, we discusse the selection of administration methods and serotypes tailored to specific diseases. Our objective is to showcase the innovative applications and future potential of AAV-based gene therapy, laying the groundwork for continued clinical advancements.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Li
- Department of oncology, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China.
| | - Chang Liu
- Department of thoracic surgery, Shenyang Tenth People's Hospital, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
2
|
Milazzo R, Montepeloso A, Kumar R, Ferro F, Cavalca E, Rigoni P, Cabras P, Ciervo Y, Das S, Capotondo A, Pellin D, Peviani M, Biffi A. Therapeutic efficacy of intracerebral hematopoietic stem cell gene therapy in an Alzheimer's disease mouse model. Nat Commun 2024; 15:8024. [PMID: 39271711 PMCID: PMC11399302 DOI: 10.1038/s41467-024-52301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The conditions supporting the generation of microglia-like cells in the central nervous system (CNS) after transplantation of hematopoietic stem/progenitor cells (HSPC) have been studied to advance the treatment of neurodegenerative disorders. Here, we explored the transplantation efficacy of different cell subsets and delivery routes with the goal of favoring the establishment of a stable and exclusive engraftment of HSPCs and their progeny in the CNS of female mice. In this setting, we show that the CNS environment drives the expansion, distribution and myeloid differentiation of the locally transplanted cells towards a microglia-like phenotype. Intra-CNS transplantation of HSPCs engineered to overexpress TREM2 decreased neuroinflammation, Aβ aggregation and improved memory in 5xFAD female mice. Our proof of concept study demonstrates the therapeutic potential of HSPC gene therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Milazzo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Rajesh Kumar
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Francesca Ferro
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Eleonora Cavalca
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Pietro Rigoni
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Paolo Cabras
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Yuri Ciervo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Sabyasachi Das
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alessia Capotondo
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Marco Peviani
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Alessandra Biffi
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy.
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy.
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| |
Collapse
|
3
|
Cao Y, Jiang W, Yan F, Pan Y, Gei L, Lu S, Chen X, Huang Y, Yan Y, Feng Y, Li Q, Zeng W, Xing W, Chen D. Sex differences in PD-L1-induced analgesia in paclitaxel-induced peripheral neuropathy mice depend on TRPV1-based inhibition of CGRP. CNS Neurosci Ther 2024; 30:e14829. [PMID: 38961264 PMCID: PMC11222069 DOI: 10.1111/cns.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024] Open
Abstract
AIMS Paclitaxel (PTX) is extensively utilized in the management of diverse solid tumors, frequently resulting in paclitaxel-induced peripheral neuropathy (PIPN). The present study aimed to investigate sex differences in the behavioral manifestations and underlying pathogenesis of PIPN and search for clinically efficacious interventions. METHODS Male and female C57BL/6 mice (5-6 weeks and 12 months, weighing 18-30 g) were intraperitoneally (i.p.) administered paclitaxel diluted in saline (NaCl 0.9%) at a dose of 2 mg/kg every other day for a total of 4 injections. Von Frey and hot plate tests were performed before and after administration to confirm the successful establishment of the PIPN model and also to evaluate the pain of PIPN and the analgesic effect of PD-L1. On day 14 after PTX administration, PD-L1 protein (10 ng/pc) was injected into the PIPN via the intrathecal (i.t.) route. To knock down TRPV1 in the spinal cord, adeno-associated virus 9 (AAV9)-Trpv1-RNAi (5 μL, 1 × 1013 vg/mL) was slowly injected via the i.t. route. Four weeks after AAV9 delivery, the downregulation of TRPV1 expression was verified by immunofluorescence staining and Western blotting. The levels of PD-L1, TRPV1 and CGRP were measured via Western blotting, RT-PCR, and immunofluorescence staining. The levels of TNF-α and IL-1β were measured via RT-PCR. RESULTS TRPV1 and CGRP protein and mRNA levels were higher in the spinal cords of control female mice than in those of control male mice. PTX-induced nociceptive behaviors in female PIPN mice were greater than those in male PIPN mice, as indicated by increased expression of TRPV1 and CGRP. The analgesic effects of PD-L1 on mechanical hyperalgesia and thermal sensitivity were significantly greater in female mice than in male mice, with calculated relative therapeutic levels increasing by approximately 2.717-fold and 2.303-fold, respectively. PD-L1 and CGRP were partly co-localized with TRPV1 in the dorsal horn of the mouse spinal cord. The analgesic effect of PD-L1 in PIPN mice was observed to be mediated through the downregulation of TRPV1 and CGRP expression following AAV9-mediated spinal cord specific decreased TRPV1 expression. CONCLUSIONS PTX-induced nociceptive behaviors and the analgesic effect of PD-L1 in PIPN mice were sexually dimorphic, highlighting the significance of incorporating sex as a crucial biological factor in forthcoming mechanistic studies of PIPN and providing insights for potential sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Yan Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wenqi Jiang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Fang Yan
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Yuyan Pan
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Liba Gei
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of AnesthesiologyPeking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer HospitalHohhotChina
| | - Simin Lu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Xiangnan Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of AnesthesiologyGuangdong Women and Children HospitalGuangzhouChina
| | - Yang Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Yan Yan
- Department of AnesthesiologyHuizhou Municipal Central HospitalHuizhouChina
| | - Yan Feng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Qiang Li
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wei Xing
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Dongtai Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
4
|
Cheng W, Huang J, Fu XQ, Tian WY, Zeng PM, Li Y, Luo ZG. Intrathecal delivery of AAV-NDNF ameliorates disease progression of ALS mice. Mol Ther 2023; 31:3277-3289. [PMID: 37766430 PMCID: PMC10638056 DOI: 10.1016/j.ymthe.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/22/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a uniformly lethal neurodegenerative disease characterized by progressive deterioration of motor neurons and neuromuscular denervation. Adeno-associated virus (AAV)-mediated delivery of trophic factors is being considered as a potential disease-modifying therapeutic avenue. Here we show a marked effect of AAV-mediated over-expression of neuron-derived neurotrophic factor (NDNF) on SOD1G93A ALS model mice. First, we adopt AAV-PHP.eB capsid to enable widespread expression of target proteins in the brain and spinal cord when delivered intrathecally. Then we tested the effects of AAV-NDNF on SOD1G93A mice at different stages of disease. Interestingly, AAV-NDNF markedly improved motor performance and alleviated weight loss when delivered at early post-symptomatic stage. Injection in the middle post-symptomatic stages still improved the locomotion ability, although it did not alleviate the loss of body weight. Injection in the late stage also extended the life span of SOD1G93A mice. Furthermore, NDNF expression promoted the survival of spinal motoneurons, reduced abnormal protein aggregation, and preserved the innervated neuromuscular functions. We further analyzed the signaling pathways of NDNF expression and found that it activates cell survival and growth-associated mammalian target of rapamycin signaling pathway and downregulates apoptosis-related pathways. Thus, intrathecally AAV-NDNF delivery has provided a potential strategy for the treatment of ALS.
Collapse
Affiliation(s)
- Wei Cheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences (CAS), Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiu-Qing Fu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Ya Tian
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
5
|
Yeo M, Chen Y, Jiang C, Chen G, Wang K, Chandra S, Bortsov A, Lioudyno M, Zeng Q, Wang P, Wang Z, Busciglio J, Ji RR, Liedtke W. Repurposing cancer drugs identifies kenpaullone which ameliorates pathologic pain in preclinical models via normalization of inhibitory neurotransmission. Nat Commun 2021; 12:6208. [PMID: 34707084 PMCID: PMC8551327 DOI: 10.1038/s41467-021-26270-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Inhibitory GABA-ergic neurotransmission is fundamental for the adult vertebrate central nervous system and requires low chloride concentration in neurons, maintained by KCC2, a neuroprotective ion transporter that extrudes intracellular neuronal chloride. To identify Kcc2 gene expression‑enhancing compounds, we screened 1057 cell growth-regulating compounds in cultured primary cortical neurons. We identified kenpaullone (KP), which enhanced Kcc2/KCC2 expression and function in cultured rodent and human neurons by inhibiting GSK3ß. KP effectively reduced pathologic pain-like behavior in mouse models of nerve injury and bone cancer. In a nerve-injury pain model, KP restored Kcc2 expression and GABA-evoked chloride reversal potential in the spinal cord dorsal horn. Delta-catenin, a phosphorylation-target of GSK3ß in neurons, activated the Kcc2 promoter via KAISO transcription factor. Transient spinal over-expression of delta-catenin mimicked KP analgesia. Our findings of a newly repurposed compound and a novel, genetically-encoded mechanism that each enhance Kcc2 gene expression enable us to re-normalize disrupted inhibitory neurotransmission through genetic re-programming.
Collapse
Affiliation(s)
- Michele Yeo
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
| | - Changyu Jiang
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Gang Chen
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Kaiyuan Wang
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Sharat Chandra
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Andrey Bortsov
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Maria Lioudyno
- Department of Neurobiology & Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA, USA
| | - Qian Zeng
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Peng Wang
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Zilong Wang
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Jorge Busciglio
- Department of Neurobiology & Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA, USA
| | - Ru-Rong Ji
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Duke Neurology Clinics for Headache, Head-Pain and Trigeminal Sensory Disorders, Duke University Medical Center, Durham, NC, USA.
- Duke Anesthesiology Clinics for Innovative Pain Therapy, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|