1
|
Emery MV, Bolhofner K, Spake L, Ghafoor S, Versoza CJ, Rawls EM, Winingear S, Buikstra JE, Loreille O, Fulginiti LC, Stone AC. Targeted enrichment of whole-genome SNPs from highly burned skeletal remains. J Forensic Sci 2024; 69:1558-1577. [PMID: 38415845 DOI: 10.1111/1556-4029.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/29/2024]
Abstract
Genetic assessment of highly incinerated and/or degraded human skeletal material is a persistent challenge in forensic DNA analysis, including identifying victims of mass disasters. Few studies have investigated the impact of thermal degradation on whole-genome single-nucleotide polymorphism (SNP) quality and quantity using next-generation sequencing (NGS). We present whole-genome SNP data obtained from the bones and teeth of 27 fire victims using two DNA extraction techniques. Extracts were converted to double-stranded DNA libraries then enriched for whole-genome SNPs using unpublished biotinylated RNA baits and sequenced on an Illumina NextSeq 550 platform. Raw reads were processed using the EAGER (Efficient Ancient Genome Reconstruction) pipeline, and the SNPs filtered and called using FreeBayes and GATK (v. 3.8). Mixed-effects modeling of the data suggest that SNP variability and preservation is predominantly determined by skeletal element and burn category, and not by extraction type. Whole-genome SNP data suggest that selecting long bones, hand and foot bones, and teeth subjected to temperatures <350°C are the most likely sources for higher genomic DNA yields. Furthermore, we observed an inverse correlation between the number of captured SNPs and the extent to which samples were burned, as well as a significant decrease in the total number of SNPs measured for samples subjected to temperatures >350°C. Our data complement previous analyses of burned human remains that compare extraction methods for downstream forensic applications and support the idea of adopting a modified Dabney extraction technique when traditional forensic methods fail to produce DNA yields sufficient for genetic identification.
Collapse
Affiliation(s)
- Matthew V Emery
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Katelyn Bolhofner
- Center for Bioarchaeology, Arizona State University, Tempe, Arizona, USA
- School of Interdisciplinary Forensics, Arizona State University, Glendale, Arizona, USA
| | - Laure Spake
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| | - Suhail Ghafoor
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Cyril J Versoza
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Erin M Rawls
- School of Life Sciences, Arizona State University, Life Sciences C, Tempe, Arizona, USA
| | - Stevie Winingear
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Jane E Buikstra
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
- Center for Bioarchaeology, Arizona State University, Tempe, Arizona, USA
| | - Odile Loreille
- FBI Laboratory, DNA Support Unit, Quantico, Virginia, USA
| | - Laura C Fulginiti
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Maricopa County Office of the Medical Examiner, Phoenix, Arizona, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Life Sciences C, Tempe, Arizona, USA
- Center for Bioarchaeology, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Danielewski M, Żuraszek J, Zielińska A, Herzig KH, Słomski R, Walkowiak J, Wielgus K. Methodological Changes in the Field of Paleogenetics. Genes (Basel) 2023; 14:genes14010234. [PMID: 36672975 PMCID: PMC9859346 DOI: 10.3390/genes14010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Paleogenetics has significantly changed since its inception almost forty years ago. Initially, molecular techniques available to the researchers offered minimal possibilities for ancient DNA analysis. The subsequent expansion of the scientific tool cabinet allowed for more remarkable achievements, combined has with the newfound popularity of this budding field of science. Finally, a breakthrough was made with the development of next-generation sequencing (NGS) technologies and the update of DNA isolation protocols, through which even very fragmented aDNA samples could be used to sequence whole genomes. In this paper, we review the achievements made thus far and compare the methodologies utilized in this field of science, discussing their benefits and challenges.
Collapse
Affiliation(s)
- Mikołaj Danielewski
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Joanna Żuraszek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Karl-Heinz Herzig
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Medical Research Center, Oulu University Hospital, P.O. Box 5000, FIN-90014 Oulu, Finland
- Correspondence: (K.-H.H.); (K.W.)
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Karolina Wielgus
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
- Correspondence: (K.-H.H.); (K.W.)
| |
Collapse
|
3
|
Klowak JA, El Helou S, Pernica JM, Parker MJ, Surette M, Poinar H, Fox-Robichaud AE. Fast I(n)dentification of Pathogens in Neonates (FINDPATH-N): protocol for a prospective pilot cohort study of next-generation sequencing for pathogen identification in neonates with suspected sepsis. BMJ Paediatr Open 2020; 4:e000651. [PMID: 32518844 PMCID: PMC7254136 DOI: 10.1136/bmjpo-2020-000651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Sepsis is a major source of morbidity and mortality in neonates; however, identification of the causative pathogens is challenging. Many neonates have negative blood cultures despite clinical evidence of sepsis. Next-generation sequencing (NGS) is a high-throughput, parallel sequencing technique for DNA. Pathogen-targeted enrichment followed by NGS has the potential to be more sensitive and faster than current gold-standard blood culture. In this pilot study, we will test the feasibility and pathogen detection patterns of pathogen-targeted NGS in neonates with suspected sepsis. Additionally, the distribution and diagnostic accuracy of biomarkers cell-free DNA and protein C levels at two time points will be explored. METHODS AND ANALYSIS We will conduct a prospective, pilot observational study. Neonates over 1 kg with suspected sepsis from a single tertiary care children's hospital will be recruited for the study. Recruitment will be censored at 200 events or 6 months' duration. Two blood study samples will be taken: the first simultaneous to the blood culture (time=0 hour, for NGS and biomarkers) via an exception to consent (deferred consent) and another 24 hours later after prospective consent (biomarkers only). Neonates will be adjudicated into those with clinical sepsis, culture-proven sepsis and without sepsis based on clinical criteria. Feasibility parameters (eg, recruitment) and NGS process time will be reported.For analysis, NGS results will be described in aggregate, compared with the simultaneous blood culture (sensitivity and specificity) and reviewed via expert panel for plausibility. Pilot data for biomarker distribution and diagnostic accuracy (sensitivity and specificity) for distinguishing between septic and non-septic neonates will be reported. ETHICS AND DISSEMINATION Ethics approval has been granted by the Hamilton Integrated Research Ethics Board. We will seek publication of study results in peer-reviewed journals.
Collapse
Affiliation(s)
- Jennifer Ann Klowak
- Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Salhab El Helou
- Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Jeffrey M Pernica
- Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Melissa J Parker
- Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | | | - Hendrik Poinar
- Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Alison E Fox-Robichaud
- Medicine, McMaster University, Hamilton, Ontario, Canada.,Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | | |
Collapse
|