1
|
Kogler VJ, Miles JA, Özpolat T, Bailey SL, Byrne DA, Bawcom-Randall M, Wang Y, Larsen HJ, Reed F, Fu X, Stolla M. Platelet dysfunction reversal with cold-stored vs room temperature-stored platelet transfusions. Blood 2024; 143:2073-2088. [PMID: 38427589 PMCID: PMC11143524 DOI: 10.1182/blood.2023022593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
ABSTRACT Platelets are stored at room temperature for 5 to 7 days (room temperature-stored platelets [RSPs]). Because of frequent and severe shortages, the US Food and Drug Administration recently approved up to 14-day cold-stored platelets (CSPs) in plasma. However, the posttransfusion function of CSPs is unknown and it is unclear which donors are best suited to provide either RSPs or CSPs. In this study, we sought to evaluate the posttransfusion platelet function and its predictors for platelets stored for the maximum approved storage times (7-day RSPs and 14-day CSPs) in healthy volunteers on acetylsalicylic acid (ASA). We conducted a randomized crossover study in 10 healthy humans. Individuals donated 1 platelet unit, stored at either 22°C or 4°C based on randomization. Before transfusion, participants ingested ASA to inhibit endogenous platelets. Transfusion recipients were tested for platelet function and lipid mediators. Platelet units were tested for lipid mediators only. A second round of transfusion with the alternative product was followed by an identical testing sequence. RSPs reversed platelet inhibition significantly better in αIIbβ3 integrin activation-dependent assays. In contrast, CSPs in recipients led to significantly more thrombin generation, which was independent of platelet microparticles. Lysophosphatidylcholine-O species levels predicted the procoagulant capacity of CSPs. In contrast, polyunsaturated fatty acid concentrations predicted the aggregation response of RSPs. In summary, we provide, to our knowledge, the first efficacy data of extended-stored CSPs in plasma. Our results suggest that identifying ideal RSP and CSP donors is possible, and pave the way for larger studies in the future. This trial is registered at www.ClinicalTrials.gov as #NCT0511102.
Collapse
Affiliation(s)
- Valery J. Kogler
- Bloodworks Northwest Research Institute, Seattle, WA
- Department of Pathology and Laboratory Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Jeffrey A. Miles
- Bloodworks Northwest Research Institute, Seattle, WA
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA
| | - Tahsin Özpolat
- Bloodworks Northwest Research Institute, Seattle, WA
- Department of Medicine, Division of Nephrology, University of Arizona, School of Medicine, Tucson, AZ
| | | | | | | | - Yi Wang
- Bloodworks Northwest Research Institute, Seattle, WA
| | | | - Franklin Reed
- Bloodworks Northwest Research Institute, Seattle, WA
| | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Moritz Stolla
- Bloodworks Northwest Research Institute, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
2
|
Kim CY, Larsen HJ, Spitalnik SL, Hod EA, Francis RO, Hudson KE, Gordy DE, Stone EF, Peltier S, Amireault P, D’Alessandro A, Zimring JC, Buehler PW, Fu X, Thomas T. Low-Dose Dietary Fish Oil Improves RBC Deformability without Improving Post-Transfusion Recovery in Mice. Nutrients 2023; 15:4456. [PMID: 37892532 PMCID: PMC10610231 DOI: 10.3390/nu15204456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary LC-PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. Female C57BL/6J mice consumed diets containing increasing amounts of fish oil (FO) ad libitum for 8 weeks. RBC deformability, filterability, and post-transfusion recovery (PTR) were evaluated before and after cold storage. Lipidomics and lipid peroxidation markers were evaluated in fresh and stored RBCs. High-dose dietary FO (50%, 100%) was associated with a reduction in RBC quality (i.e., in vivo lifespan, deformability, lipid peroxidation) along with a reduced 24 h PTR after cold storage. Low-dose dietary FO (6.25-12.5%) improved the filterability of fresh RBCs and reduced the lipid peroxidation of cold-stored RBCs. Although low doses of FO improved RBC deformability and reduced oxidative stress, no improvement was observed for the PTR of stored RBCs. The improvement in RBC deformability observed with low-dose FO supplementation could potentially benefit endurance athletes and patients with conditions resulting from reduced perfusion, such as peripheral vascular disease.
Collapse
Affiliation(s)
- Christopher Y. Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | | | - Steven L. Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Dominique E. Gordy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Elizabeth F. Stone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Sandy Peltier
- Biologie Intégrée du Globule Rouge, Institut National de la Santé et de la Recherche Médicale, Université Paris Cité et Université des Antilles, 75014 Paris, France
| | - Pascal Amireault
- Biologie Intégrée du Globule Rouge, Institut National de la Santé et de la Recherche Médicale, Université Paris Cité et Université des Antilles, 75014 Paris, France
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Institut Imagine, INSERM, Université Paris Cité, 75005 Paris, France
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Paul W. Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaoyun Fu
- Bloodworks Research Institute, Seattle, WA 98102, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY 10032, USA
| |
Collapse
|
3
|
Larsen HJ, Byrne D, Özpolat T, Chauhan A, Bailey SL, Rhoads N, Reed F, Stolla MC, Adili R, Holinstat M, Fu X, Stolla M. Loss of 12-Lipoxygenase Improves the Post-Transfusion Function of Stored Platelets. Arterioscler Thromb Vasc Biol 2023; 43:1990-2007. [PMID: 37650322 PMCID: PMC10538391 DOI: 10.1161/atvbaha.123.319021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Platelets for transfusion are stored for 5 to 7 days. Previous studies have shown that HETE levels in the storage bag negatively correlate with platelet performance in vivo, suggesting that the dysregulation of bioactive lipid mediators may contribute to the storage lesion. In the current study, we sought to understand how genetic deletion and pharmacological inhibition of 12-LOX (12-lipoxygenase) affects platelets during storage and after transfusion. METHODS Platelets from 12-LOX+/+ (wild-type [WT]) and 12-LOX-/- mice were stored for 24 and 48 hours and profiled using liquid chromatography-tandem mass spectrometry-multiple reaction monitoring or transfused into thrombocytopenic hIL4R (human interleukin 4 receptor)-transgenic mice. Platelet function was assessed by flow cytometry and in vivo thrombosis and hemostasis models. To test the role of the COX-1 (cyclooxygenase-1) pathway, donor mice were treated with acetylsalicylic acid. Human platelets were treated with the 12-LOX inhibitor, VLX-1005, or vehicle, stored, and transfused to NOD/SCID (nonobese diabetic/severe combined immunodeficiency) mice. RESULTS Polyunsaturated fatty acids increased significantly in stored platelets from 12-LOX-/- mice, whereas oxylipin concentrations were significantly higher in WT platelets. After transfusion to thrombocytopenic mice, we observed significantly more baseline αIIbβ3 integrin activation in 12-LOX-/- platelets than in WT platelets. Stored platelets from 12-LOX-/- mice occluded vessels significantly faster than stored WT platelets. In hemostasis models, significantly more stored 12-LOX-/- than WT platelets accumulated at the site of venous injury leading to reduced blood loss. Inhibition of COX-1 abrogated both increased integrin activation and thromboxane generation in stored 12-LOX-/- platelets, highlighting the critical role of this pathway for improved post-transfusion function. Consistent with our mouse studies, human platelets stored with VLX-1005, showed increased integrin activation compared with vehicle-treated platelets after transfusion. CONCLUSIONS Deleting 12-LOX improves the post-transfusion function of stored murine platelets by increasing thromboxane generation through COX-1-dependent arachidonic acid metabolism. Future studies should determine the feasibility and safety of 12-LOX-inhibited platelets transfused to humans.
Collapse
Affiliation(s)
| | - Daire Byrne
- Bloodworks Northwest Research Institute, Seattle, WA
| | | | | | | | - Nicole Rhoads
- Bloodworks Northwest Research Institute, Seattle, WA
| | - Franklin Reed
- Bloodworks Northwest Research Institute, Seattle, WA
| | - Massiel C. Stolla
- University of Washington Medical Center, Department of Medicine, Division of Hematology, Seattle, WA
| | - Reheman Adili
- Bloodworks Northwest Research Institute, Seattle, WA
| | | | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, Seattle, WA
- University of Washington Medical Center, Department of Medicine, Division of Hematology, Seattle, WA
| | - Moritz Stolla
- Bloodworks Northwest Research Institute, Seattle, WA
- University of Washington Medical Center, Department of Medicine, Division of Hematology, Seattle, WA
- University of Washington Medical Center, Department of Laboratory Medicine and Pathology, Seattle, WA
| |
Collapse
|
4
|
Kress J, Nandita E, Jones E, Sanou M, Higgins J, Kosanam H. A targeted liquid chromatography mass spectrometry method for routine monitoring of cell culture media components for bioprocess development. J Chromatogr A 2023; 1706:464281. [PMID: 37566999 DOI: 10.1016/j.chroma.2023.464281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
The analysis of cell culture media (CCM) components is critical for understanding cell growth kinetics and overall product quality during biomanufacturing. Given the diverse physical and chemical nature of CCM compounds present at a wide range of concentrations, there is an increasing demand for single-platform analytical assays with exceptional specificity and sensitivity. This study presents a targeted LC-MS/MS method for the identification and quantitation of 110 CCM analytes is presented, where target metabolites are monitored over an 20-min gradient. The analyte panel constitutes amino acids, vitamins, organic acids, nucleic acids, carbohydrates, and lipids. The method employs isotopically labeled standards to enable specific and accurate relative quantitation of CCM compounds based on physicochemical properties and retention time. Quantitation is performed on a triple quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode. The method demonstrates strong linearity with an R2 of ≥0.99 with three orders of linear dynamic range and inter-day and intra-day precision with a%CV of <10% for spiked-in quality control samples. We also present three case studies to demonstrate method applicability in the bioprocessing space for developing vaccines and biologics.
Collapse
Affiliation(s)
- Jared Kress
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc, West Point, PA, USA
| | | | | | - Missa Sanou
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc, West Point, PA, USA
| | - John Higgins
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc, West Point, PA, USA
| | - Hari Kosanam
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc, West Point, PA, USA.
| |
Collapse
|
5
|
The enantioselective separation and quantitation of the hydroxy-metabolites of arachidonic acid by liquid chromatography - tandem mass spectrometry. Prostaglandins Other Lipid Mediat 2023; 165:106701. [PMID: 36528330 DOI: 10.1016/j.prostaglandins.2022.106701] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Arachidonic acid (AA) is a polyunsaturated fatty acid with a structure of 20:4(ω-6). Cytochrome P450s (CYPs) metabolize AA to several regioisomers and enantiomers of hydroxyeicosatetraenoic acids (HETEs). The hydroxy-metabolites (HETEs) exist as enantiomers in the biological system. The chiral assays developed for HETEs are so far limited to a few assays reported for midchain HETEs. The developed method is capable of quantitative analysis for midchain, subterminal HETE enantiomers, and terminal HETEs in microsomes. The peak area or height ratios were linear over concentrations ranging (0.01 -0.6 µg/ml) with r2 > 0.99. The intra-run percent error and coefficient of variation (CV) were ≤ ± 12 %. The inter-run percent error and coefficient of variation (CV)were ≤ ± 13 %, and ≤ 15 %, respectively. The matrix effect for the assay was also within the acceptable limit (≤ ± 15 %). The recovery of HETE metabolites ranged from 70 % to 115 %. The method showed a reliable and robust performance for chiral analysis of cytochrome P450-mediated HETE metabolites.
Collapse
|
6
|
Kim CY, Johnson H, Peltier S, Spitalnik SL, Hod EA, Francis RO, Hudson KE, Stone EF, Gordy DE, Fu X, Zimring JC, Amireault P, Buehler PW, Wilson RB, D'Alessandro A, Shchepinov MS, Thomas T. Deuterated Linoleic Acid Attenuates the RBC Storage Lesion in a Mouse Model of Poor RBC Storage. Front Physiol 2022; 13:868578. [PMID: 35557972 PMCID: PMC9086239 DOI: 10.3389/fphys.2022.868578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Long-chain polyunsaturated fatty acids (PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. However, enriching the lipid membrane with PUFAs increases the potential for peroxidation in oxidative environments (e.g., refrigerated storage), resulting in membrane damage. Substitution of bis-allylic hydrogens with deuterium ions in PUFAs decreases hydrogen abstraction, thereby inhibiting peroxidation. If lipid peroxidation is a causal factor in the RBC storage lesion, incorporation of deuterated linoleic acid (DLA) into the RBC membrane should decrease lipid peroxidation, thereby improving RBC lifespan, deformability, filterability, and post-transfusion recovery (PTR) after cold storage. Study Design and Methods: Mice associated with good (C57BL/6J) and poor (FVB) RBC storage quality received diets containing 11,11-D2-LA Ethyl Ester (1.0 g/100 g diet; deuterated linoleic acid) or non-deuterated LA Ethyl Ester (control) for 8 weeks. Deformability, filterability, lipidomics, and lipid peroxidation markers were evaluated in fresh and stored RBCs. Results: DLA was incorporated into RBC membranes in both mouse strains. DLA diet decreased lipid peroxidation (malondialdehyde) by 25.4 and 31% percent in C57 mice and 12.9 and 79.9% in FVB mice before and after cold storage, respectively. In FVB, but not C57 mice, deformability filterability, and post-transfusion recovery were significantly improved. Discussion: In a mouse model of poor RBC storage, with elevated reactive oxygen species production, DLA attenuated lipid peroxidation and significantly improved RBC storage quality.
Collapse
Affiliation(s)
- Christopher Y Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Hannah Johnson
- Bloodworks Research Institute, Seattle, WA, United States
| | - Sandy Peltier
- Institut National de la Transfusion Sanguine, Paris, France
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Richard O Francis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Elizabeth F Stone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Dominique E Gordy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Xiaoyun Fu
- Bloodworks Research Institute, Seattle, WA, United States
| | - James C Zimring
- University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pascal Amireault
- Institut National de la Transfusion Sanguine, Paris, France.,X U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Université de Paris, Paris, France
| | - Paul W Buehler
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| |
Collapse
|
7
|
Gao P, Huang X, Fang XY, Zheng H, Cai SL, Sun AJ, Zhao L, Zhang Y. Application of metabolomics in clinical and laboratory gastrointestinal oncology. World J Gastrointest Oncol 2021; 13:536-549. [PMID: 34163571 PMCID: PMC8204353 DOI: 10.4251/wjgo.v13.i6.536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/09/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolites are versatile bioactive molecules. They are not only the substrates and/or the products of enzymatic reactions but also act as the regulators in the systemic metabolism. Metabolomics is a high-throughput analytical strategy to qualify or quantify as many metabolites as possible in the metabolomes. It is an indispensable part of systems biology. The leading techniques in this field are mainly based on mass spectrometry and nuclear magnetic resonance spectroscopy. The metabolomic analysis has gained wide use in bioscience fields. In the tumor research arena, metabolomics can be employed to identify biomarkers for prediction, diagnosis, and prognosis. Chemotherapeutic effect evaluation and personalized medicine decision-making can also benefit from metabolomic analysis of patient biofluid or biopsy samples. Many cell-level studies can help in disease exploration. In this review, the basic features and principles of varied metabolomic analysis are introduced. The value of metabolomics in clinical and laboratory gastrointestinal cancer studies is discussed, especially for mass spectrometry applications. Besides, combined use of metabolomics and other tools to solve problems in cancer practice is briefly illustrated. In summary, metabolomics paves a new way to explore cancerous diseases in the light of small molecules.
Collapse
Affiliation(s)
- Peng Gao
- Department ofClinical Laboratory, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Xin Huang
- Department of Internal Medicine, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Xue-Yan Fang
- Department of Nursing, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Hui Zheng
- Clinical Research Center, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Shu-Ling Cai
- Clinical Research Center, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Ai-Jun Sun
- Clinical Research Center, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Liang Zhao
- Department of Internal Medicine, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| | - Yong Zhang
- Department of Surgery, Dalian Sixth People's Hospital, Dalian 116031, Liaoning Province, China
| |
Collapse
|
8
|
Thomas T, Cendali F, Fu X, Gamboni F, Morrison EJ, Beirne J, Nemkov T, Antonelou MH, Kriebardis A, Welsby I, Hay A, Dziewulska KH, Busch MP, Kleinman S, Buehler PW, Spitalnik SL, Zimring JC, D'Alessandro A. Fatty acid desaturase activity in mature red blood cells and implications for blood storage quality. Transfusion 2021; 61:1867-1883. [PMID: 33904180 DOI: 10.1111/trf.16402] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increases in the red blood cell (RBC) degree of fatty acid desaturation are reported in response to exercise, aging, or diseases associated with systemic oxidant stress. However, no studies have focused on the presence and activity of fatty acid desaturases (FADS) in the mature RBC. STUDY DESIGN AND METHODS Steady state metabolomics and isotope-labeled tracing experiments, immunofluorescence approaches, and pharmacological interventions were used to determine the degree of fatty acid unsaturation, FADS activity as a function of storage, oxidant stress, and G6PD deficiency in human and mouse RBCs. RESULTS In 250 blood units from the REDS III RBC Omics recalled donor population, we report a storage-dependent accumulation of free mono-, poly-(PUFAs), and highly unsaturated fatty acids (HUFAs), which occur at a faster rate than saturated fatty acid accumulation. Through a combination of immunofluorescence, pharmacological inhibition, tracing experiments with stable isotope-labeled fatty acids, and oxidant challenge with hydrogen peroxide, we demonstrate the presence and redox-sensitive activity of FADS2, FADS1, and FADS5 in the mature RBC. Increases in PUFAs and HUFAs in human and mouse RBCs correlate negatively with storage hemolysis and positively with posttransfusion recovery. Inhibition of these enzymes decreases accumulation of free PUFAs and HUFAs in stored RBCs, concomitant to increases in pyruvate/lactate ratios. Alterations of this ratio in G6PD deficient patients or units supplemented with pyruvate-rich rejuvenation solutions corresponded to decreased PUFA and HUFA accumulation. CONCLUSION Fatty acid desaturases are present and active in mature RBCs. Their activity is sensitive to oxidant stress, storage duration, and alterations of the pyruvate/lactate ratio.
Collapse
Affiliation(s)
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan Beirne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Ian Welsby
- Duke University, Durham, North Carolina, USA
| | - Ariel Hay
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | | | | | | | | | | - James C Zimring
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | |
Collapse
|
9
|
Hyötyläinen T. Analytical challenges in human exposome analysis with focus on environmental analysis combined with metabolomics. J Sep Sci 2021; 44:1769-1787. [PMID: 33650238 DOI: 10.1002/jssc.202001263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Environmental factors, such as chemical exposures, are likely to play a crucial role in the development of several human chronic diseases. However, how the specific exposures contribute to the onset and progress of various diseases is still poorly understood. In part, this is because comprehensive characterization of the chemical exposome is a highly challenging task, both due to its complex dynamic nature as well as due to the analytical challenges. Herein, the analytical challenges in the field of exposome research are reviewed, with specific emphasis on the sampling, sample preparation, and analysis, as well as challenges in the compound identification. The primary focus is on the human chemical exposome, that is, exposures to mixtures of environmental chemicals and its impact on human metabolome. In order to highlight the recent progress in the exposome research in relation to human health and disease, selected examples of human exposome studies are presented.
Collapse
Affiliation(s)
- Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
10
|
Hu T, An Z, Shi C, Li P, Liu L. A sensitive and efficient method for simultaneous profiling of bile acids and fatty acids by UPLC-MS/MS. J Pharm Biomed Anal 2020; 178:112815. [DOI: 10.1016/j.jpba.2019.112815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/13/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
|