1
|
Al Abyad D, Serfaty X, Lefrançois P, Arbault S, Baciou L, Dupré-Crochet S, Kouzayha A, Bizouarn T. Role of the phospholipid binding sites, PX of p47 phox and PB region of Rac1, in the formation of the phagocyte NADPH oxidase complex NOX2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184180. [PMID: 37245861 DOI: 10.1016/j.bbamem.2023.184180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
In phagocytes, superoxide anion (O2-), the precursor of reactive oxygen species, is produced by the NADPH oxidase complex to kill pathogens. Phagocyte NADPH oxidase consists of the transmembrane cytochrome b558 (cyt b558) and four cytosolic components: p40phox, p47phox, p67phox, and Rac1/2. The phagocyte activation by stimuli leads to activation of signal transduction pathways. This is followed by the translocation of cytosolic components to the membrane and their association with cyt b558 to form the active enzyme. To investigate the roles of membrane-interacting domains of the cytosolic proteins in the NADPH oxidase complex assembly and activity, we used giant unilamellar phospholipid vesicles (GUV). We also used the neutrophil-like cell line PLB-985 to investigate these roles under physiological conditions. We confirmed that the isolated proteins must be activated to bind to the membrane. We showed that their membrane binding was strengthened by the presence of the other cytosolic partners, with a key role for p47phox. We also used a fused chimera consisting of p47phox(aa 1-286), p67phox(aa 1-212) and Rac1Q61L, as well as mutated versions in the p47phox PX domain and the Rac polybasic region (PB). We showed that these two domains have a crucial role in the trimera membrane-binding and in the trimera assembly to cyt b558. They also have an impact on O2.- production in vitro and in cellulo: the PX domain strongly binding to GUV made of a mix of polar lipids; and the PB region strongly binding to the plasma membrane of neutrophils and resting PLB-985 cells.
Collapse
Affiliation(s)
- Dina Al Abyad
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France; Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon
| | - Xavier Serfaty
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Pauline Lefrançois
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33402 Talence, France
| | - Stephane Arbault
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33402 Talence, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Laura Baciou
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Sophie Dupré-Crochet
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Achraf Kouzayha
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon
| | - Tania Bizouarn
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France.
| |
Collapse
|
2
|
Bouraoui A, Louzada RA, Aimeur S, Waeytens J, Wien F, My-Chan Dang P, Bizouarn T, Dupuy C, Baciou L. New insights in the molecular regulation of the NADPH oxidase 2 activity: Negative modulation by Poldip2. Free Radic Biol Med 2023; 199:113-125. [PMID: 36828293 DOI: 10.1016/j.freeradbiomed.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Poldip2 was shown to be involved in oxidative signaling to ensure certain biological functions. It was proposed that, in VSMC, by interaction with the Nox4-associated membrane protein p22phox, Poldip2 stimulates the level of reactive oxygen species (ROS) production. In vitro, with fractionated membranes from HEK393 cells over-expressing Nox4, we confirmed the up-regulation of NADPH oxidase 4 activity by the recombinant and purified Poldip2. Besides Nox4, the Nox1, Nox2, or Nox3 isoforms are also established partners of the p22phox protein raising the question of their regulation by Poldip2 and of the effect in cells expressing simultaneously different Nox isoforms. In this study, we have addressed this issue by investigating the potential regulatory role of Poldip2 on NADPH oxidase 2, present in phagocyte cells. Unexpectedly, the effect of Poldip2 on phagocyte NADPH oxidase 2 was opposite to that observed on NADPH oxidase 4. Using membranes from circulating resting neutrophils, the ROS production rate of NADPH oxidase 2 was down-regulated by Poldip2 (2.5-fold). The down-regulation effect could not be correlated to the interaction of Poldip2 with p22phox but rather, to the interaction of Poldip2 with the p47phox protein, one of the regulatory proteins of the phagocyte NADPH oxidase. Our results show that the interaction of Poldip2 with p47phox constitutes a novel regulatory mechanism that can negatively modulate the activity of NADPH oxidase 2 by trapping the so-called "adaptor" subunit of the complex. Poldip2 could act as a tunable switch capable of specifically regulating the activities of NADPH oxidases. This selective regulatory role of Poldip2, positive for Nox4 or negative for Nox2 could orchestrate the level and the type of ROS generated by Nox enzymes in the cells.
Collapse
Affiliation(s)
- Aicha Bouraoui
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Ruy Andrade Louzada
- Université Paris Saclay, UMR 9019 CNRS, Gustave Roussy, 94800, Villejuif, France
| | - Sana Aimeur
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Jehan Waeytens
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France; Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
| | - Frank Wien
- DISCO beamline, Synchrotron SOLEIL, Campus Paris-Saclay, 91192, Gif-sur-Yvette Cedex, France
| | - Pham My-Chan Dang
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France
| | - Tania Bizouarn
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Corinne Dupuy
- Université Paris Saclay, UMR 9019 CNRS, Gustave Roussy, 94800, Villejuif, France
| | - Laura Baciou
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France.
| |
Collapse
|
3
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
4
|
Owusu SB, Hudik E, Férard C, Dupré-Crochet S, Addison ECDK, Preko K, Bizouarn T, Houée-Levin C, Baciou L. Radiation-induced reactive oxygen species partially assemble neutrophil NADPH oxidase. Free Radic Biol Med 2021; 164:76-84. [PMID: 33387605 DOI: 10.1016/j.freeradbiomed.2020.12.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Neutrophils are key cells from the innate immune system that destroy invading bacteria or viruses, thanks mainly to the non-mitochondrial reactive oxygen species (ROS) generated by the enzyme NADPH oxidase. Our aim was to study the response of neutrophils to situations of oxidative stress with emphasis on the impact on the NADPH oxidase complex. To mimic oxidative stress, we used gamma irradiation that generated ROS (OH•, O2•- and H2O2) in a quantitative controlled manner. We showed that, although irradiation induces shorter half-lives of neutrophil (reduced by at least a factor of 2), it triggers a pre-activation of surviving neutrophils. This is detectable by the production of a small but significant amount of superoxide anions, proportional to the dose (about 3 times that of sham). Investigations at the molecular level showed that this ROS increase was generated by the NADPH oxidase enzyme after neutrophils irradiation. The NADPH oxidase complex undergoes an incomplete assembly which includes p47phox and p67phox but excludes the G-protein Rac. Importantly, this irradiation-induced pre-activation is capable of considerably improving neutrophil reactivity. Indeed, we have observed that this leads to an increase in the production of ROS and the capacity of phagocytosis, leading to the conclusion that radiation induced ROS clearly behave as neutrophil primers.
Collapse
Affiliation(s)
- Stephenson B Owusu
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France; Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elodie Hudik
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Céline Férard
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Eric C D K Addison
- Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; Medical Physics Department, Oncology Directorate, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Kwasi Preko
- Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tania Bizouarn
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Chantal Houée-Levin
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Laura Baciou
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France.
| |
Collapse
|
5
|
Tallima H, Hanna VS, El Ridi R. Arachidonic Acid Is a Safe and Efficacious Schistosomicide, and an Endoschistosomicide in Natural and Experimental Infections, and Cysteine Peptidase Vaccinated Hosts. Front Immunol 2020; 11:609994. [PMID: 33281832 PMCID: PMC7705376 DOI: 10.3389/fimmu.2020.609994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Blood flukes of the genus Schistosoma are covered by a protective heptalaminated, double lipid bilayer surface membrane. Large amounts of sphingomyelin (SM) in the outer leaflet form with surrounding water molecules a tight hydrogen bond barrier, which allows entry of nutrients and prevents access of host immune effectors. Excessive hydrolysis of SM to phosphoryl choline and ceramide via activation of the parasite tegument-associated neutral sphingomyelinase (nSMase) with the polyunsaturated fatty acid, arachidonic acid (ARA) leads to parasite death, via allowing exposure of apical membrane antigens to antibody-dependent cell-mediated cytotoxicity (ADCC), and accumulation of the pro-apoptotic ceramide. Surface membrane nSMase represents, thus, a worm Achilles heel, and ARA a valid schistosomicide. Several experiments conducted in vitro using larval, juvenile, and adult Schistosoma mansoni and Schistosoma haematobium documented ARA schistosomicidal potential. Arachidonic acid schistosomicidal action was shown to be safe and efficacious in mice and hamsters infected with S. mansoni and S. haematobium, respectively, and in children with light S. mansoni infection. A combination of praziquantel and ARA led to outstanding cure rates in children with heavy S. mansoni infection. Additionally, ample evidence was obtained for the powerful ARA ovocidal potential in vivo and in vitro against S. mansoni and S. haematobium liver and intestine eggs. Studies documented ARA as an endogenous schistosomicide in the final mammalian and intermediate snail hosts, and in mice and hamsters, immunized with the cysteine peptidase-based vaccine. These findings together support our advocating the nutrient ARA as the safe and efficacious schistosomicide of the future.
Collapse
Affiliation(s)
- Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.,Department of Chemistry, School of Science and Engineering, American University in Cairo, New Cairo, Cairo, Egypt
| | - Violette S Hanna
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Serfaty X, Lefrançois P, Houée-Levin C, Arbault S, Baciou L, Bizouarn T. Impacts of vesicular environment on Nox2 activity measurements in vitro. Biochim Biophys Acta Gen Subj 2020; 1865:129767. [PMID: 33141062 DOI: 10.1016/j.bbagen.2020.129767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND The production of superoxide anions (O2•-) by the phagocyte NADPH oxidase complex has a crucial role in the destruction of pathogens in innate immunity. Majority of in vitro studies on the functioning of NADPH oxidase indirectly follows the enzymatic reaction by the superoxide reduction of cytochrome c (cyt c). Only few reports mention the alternative approach consisting in measuring the NADPH consumption rate. When using membrane vesicles of human neutrophils, the enzyme specific activity is generally found twice higher by monitoring the NADPH oxidation than by measuring the cyt c reduction. Up to now, the literature provides only little explanations about such discrepancy despite the critical importance to quantify the exact enzyme activity. METHODS We deciphered the reasons of this disparity in studying the role of key parameters, including. cyt c and arachidonic acid concentrations, in conjunction with an ionophore, a detergent and using Clark electrode to measure the O2 consumption rates. RESULTS Our results show that the O2•- low permeability of the vesicle membrane as well as secondary reactions (O2•- and H2O2 disproportionations) are strong clues to shed light on this inconsistency. CONCLUSION AND GENERAL SIGNIFICANCE These results altogether indicate that the cyt c reduction method underestimates the accurate Nox2 activity.
Collapse
Affiliation(s)
- Xavier Serfaty
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405, Orsay, France
| | - Pauline Lefrançois
- Univ. Bordeaux, ISM, CNRS UMR 5255, NSysA group, ENSCBP, 33607 Pessac, France
| | - Chantal Houée-Levin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405, Orsay, France
| | - Stéphane Arbault
- Univ. Bordeaux, ISM, CNRS UMR 5255, NSysA group, ENSCBP, 33607 Pessac, France
| | - Laura Baciou
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405, Orsay, France
| | - Tania Bizouarn
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405, Orsay, France.
| |
Collapse
|